

Internal Medicine Residency Spokane

Reference Deranged: "Normal" Labs that are Abnormal

Sarah Knight, DO, PGY3

Aditya Nathan, DO, PGY3

David Pash, DO, PGY2

David Waples, DO, PGY2


Introduction

- Plenty of numbers to keep track of in medicine, especially in primary care
- Defining normal vs abnormal values with regards to labs influences therapeutic management
- Reliance on electronic health record data and tools to establish normal vs abnormal
- Four sets of lab values that are commonly reported as "normal":
 - Liver Enzymes
 - Iron Studies
 - Vitamin B12
 - Renal Function

Internal Medicine Residency Spokane

Liver chemistries, NOT liver function tests

- Enzymes responsible for amino group transfers
- ALT: specific to liver
- AST: present in tissues outside of the liver too

Author /Year	Proposed ALT ULN (male)	Proposed ALT ULN (female)	Comments
Neuschwander-Tetri et al. (13)	40IU/I	40 IU/I	Gender not specified, not derived from data
Piton <i>et al.</i> (18)	42 IU/I for males with BMI≤23 and 66 IU/I if BMI>23	31 IU/I for females with BMI≤23 and 44 IU/I if BMI>23	Derived from reference population with HCV
Prati et al. (24)	30IU/I	191U/I	Derived from reference population
Lee <i>et al.</i> (25)	33IU/I	25 IU/I	All had normal liver biopsies
Ruhl and Everhart (26)	29IU/I	22 IU/I	Derived from NHANES
Wright et al. (34)	331U/I	_	Gender not specified

ALT, aldriffe difficultatisterase; AST, aspartate affilibitatisterase; Divit, body mass index; OLIV, upper limit of normal.

AJG Summary: normal ALT range: 29-33 IU/I for males, 19-25 IU/I for females

- Normal ALT does not exclude liver disease
- Wide variability in reference range due to differences in healthy control population
- Linear relationship between ALT and BMI

Providence EPIC Reference Ranges

- > ALT: 17-63
- > AST: 10-45
- The upper limit of normal (ULN) in electronic medical records (EMR) can be abnormal

Primary Care Significance

- There is a broad differential for mild transaminitis but the non-alcoholic fatty liver disease (NAFLD) is the most common cause in developed countries
- Trusting the EMR reference range likely could lead to missed cases of NALFD and other liver pathology

* Relevance: increasing evidence that elevated liver enzymes are associated with morbidity and mortality

Author /year	Proposed ALT/AST cutoff level	ALT/AST level for increased mortality	Comments	
Arndt <i>et al.</i> (27)	AST 18	AST>18	3X increase in all cause mortality	
Kim <i>et al.</i> (28)	ALT<20	ALT 30-39	RR of liver mortality 2.9 (2.4–3.5) and 9.5 (7.9–11.5) in men, 3.8 (1.9–7.7) and 6.6 (1.5–25.6) in women	
Lee <i>et al.</i> (29)	ALT (ULN 45 IU/I for M, 29 for F	ALT 45–90 M 29–58 for F	SMR risk 1.32 for 1–2X ULN, and 1.78 for >2X ULN	
Ruhl and Everhart (30)	ALT 30 IU/I M, 19 IUL for F	ALT>30 for M ALT >19 for F	Increased liver related mortality	
ALT, alanine aminotransferase; AST, aspartate aminotransferase; F, female; RR, relative risk; M, male; ULN, upper limit of normal.				

Liver Enzymes (ALT)

If we lowered the ULN for ALT, how would that alter clinical practice?

Pros

 Diagnose more liver disease: significant liver disease can occur in setting of normal liver enzymes

Cons

- Increased health care costs
- Unnecessary evaluations
- Lowering blood donor pool

Ferritin

Internal Medicine Residency Spokane

Ferritin "normal" values vary highly

Component

Ref Range & Units

FERRITIN

11 - 307 ng/mL

Epic reference interval (adult female >15 y/o)

FERRITIN, P/S

MALE, FEMALE UNKNOWN μg/L

0 – <6 mo 50-500
6mo – 15 yrs 15 – 100

FEMALE
>15 yrs 20-300

MALE, UNKNOWN
>15 yr 30 – 500

Meditech reference interval

Age	Male (ng/mL)	Female (ng/mL)
0 to 5 m	13-273	12-219
6 to 12 m	12-95	12-110
1 to 5 y	12-64	12-71
6 to 11 y	16-77	15-79
12 to 19 y	16-124	15-77
Adult	30-400	15-150

Labcorp reference intervals

Methodology

Immunoassay (IA)

Reference Range(s)

Pediatric

<4 Days	Not established
4-14 Days	100-717 ng/mL
15 Days-5 Months	14-647 ng/mL
6-11 Months	8-182 ng/mL

Male

1-4 Years	5-100 ng/mL
5-13 Years	14-79 ng/mL
14-15 Years	13-83 ng/mL
16-18 Years	11-172 ng/mL
19-59 Years	38-380 ng/mL
>59 Years	24-380 ng/mL

Female

1-4 Years	5-100 ng/mL
5-13 Years	14-79 ng/mL
14-18 Years	6-67 ng/mL
19-40 Years	16-154 ng/ml
41-60 Years	16-232 ng/ml
>60 Years	16-288 ng/ml

Quest Diagnostics reference intervals

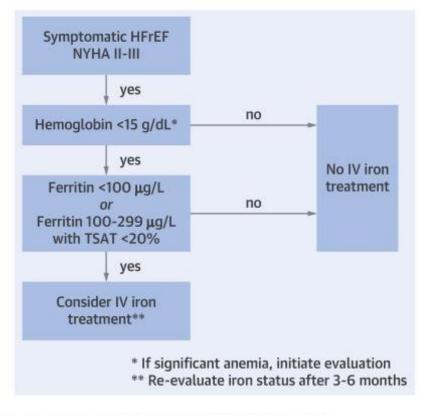
What is considered a "low ferritin"?

- Serum ferritin is the most frequently ordered test to diagnose iron deficiency, however proposed cut-off values generally range from 15-100ng/mL.
- Highly variable dependent on which laboratory or EMR is being used to interpret values.
- Also depends on patient's past medical history (HF, CKD)
- Different associations/organizations have different cut offs dependent on a patient's risk factors and active medical problems.

Iron Deficiency Anemia – American Gastroenterological Association (AGA)

In patients with anemia (Hg<13 in males, <12 in females), the AGA
recommends using a ferritin cutoff of 45ng/mL when using ferritin to diagnose
iron deficiency (1) in the general population.

Using Ferritin to diagnose Iron Deficiency in HFrEF


- All patient's with HFrEF should be screened and treated for iron deficiency anemia if present.
- Diagnosis of IDA in patients with HFrEF: (1,2)
 - Ferritin <100

OR

- Ferritin <300 + Tsat <20%
- No data currently exists for treatment of IDA in HFpEF, though clinical trials are currently ongoing (FAIR-HFpEF).
- Primary care significance
 - Iron deficiency affects up to 50% of patients with heart failure with reduced ejection fraction and is associated with poorer exercise capacity, and increased risk of mortality.

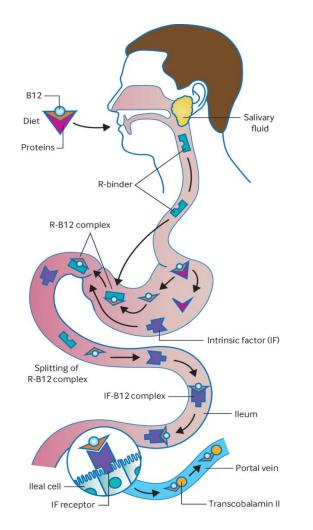
CENTRAL ILLUSTRATION: Diagnostic Algorithm for Treatment of Iron Deficiency in Patients With HF According to ESC Guidelines and Expert Consensus Recommendations

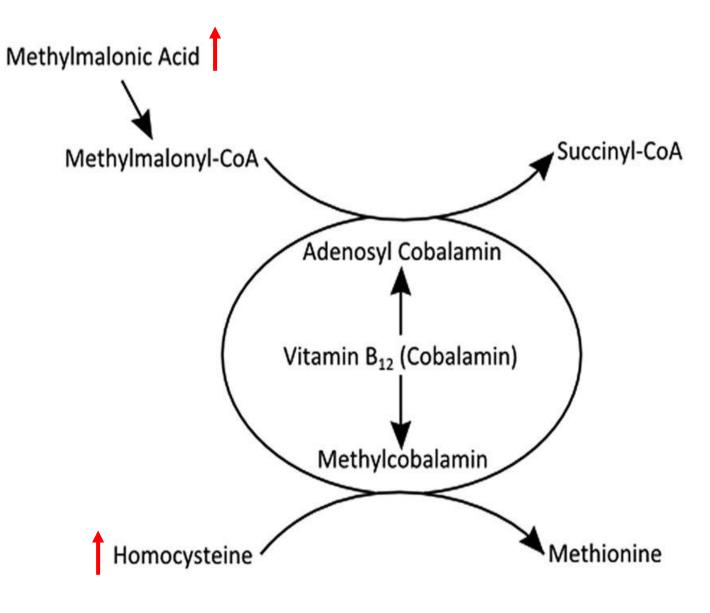
von Haehling, S. et al. J Am Coll Cardiol HF. 2019;7(1):36-46.

Providence

Using Ferritin to diagnose Iron Deficiency in Chronic Kidney Disease

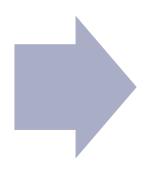
- Anemia in patients Chronic Kidney Disease is associated with an increase in mortality and hospitalizations (1).
- Hemoglobin should be monitored periodically in patients with CKD
 - CKD 3: at least annually
 - CKD 4: at least every 6 months
 - CKD 5: at least every 3-6 months
- Anemia is diagnosed in patients with CKD with:
 - Hemoglobin <13g/dL in males
 - Hemoglobin <12g/dL in females
- If an increase in Hg is desired, iron should be repleted in patients with CKD via PO or IV when:
 - Tsat <30% AND ferritin <500ng/mL





Vitamin B12 Deficiency

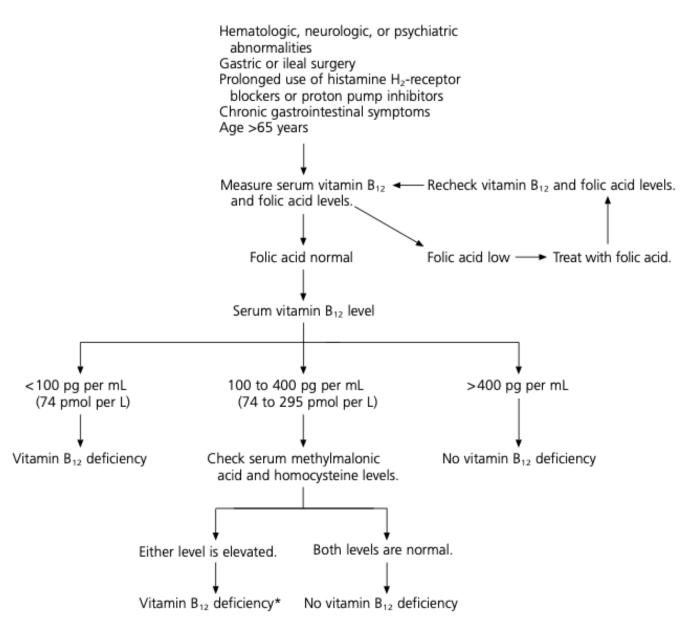
Internal Medicine Residency Spokane


(Sukumar & Saravanan, 2019); (Ankar & Kumar, 2022);

https://www.researchgate.net/figure/Figure2-Vitamin-B12-cobalamin-is-a-cofactor-in-conversion-of-methylmalonyl-coenzyme-A_fig1_276357092

Causes of Deficiency

- Celiac Disease
- Medications
- Pernicious anemia
- Veganism, etc


Symptoms

- Paresthesia in hands and feet
- Muscle cramps
- Dizziness
- Cognitive disturbance/Dementia/ Psychosis, etc

Suspected Vitamin B₁₂ Deficiency

Vitamin B12

(Robert & Brown, 2003)

ı			
Component	Ref Range & Units	1 mo ago	1 yr ago
		(8/8/22)	(11/6/20)
✓ VITAMIN B-12	180 - 914 pg/mL	381	117 ✔ ^{CM}
Comment: Deficient:	<211 pg/mL		
Borderline: >=211 - 2	46 pg/mL		
Resulting Agency		PMGPMP	PMGSPOK CERNER

Component	Ref Range & Units	1 mo ago
METHYLMALONIC ACID	0 - 378 nmol/L	514 ^
Resulting Agency		LabCorpSD

Overview:

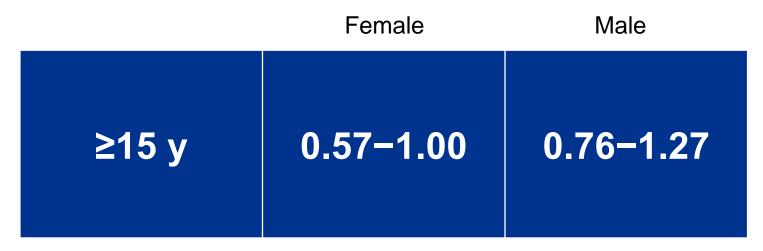
- Many causes
- Question the reference range
- ➤ Consider measuring an MMA in conjunction with vitamin B12 +/- homocysteine level
- ➤ May consider trial of injections vs * oral therapy

*oral therapy in high doses effective

Overdose of vitamin B12?

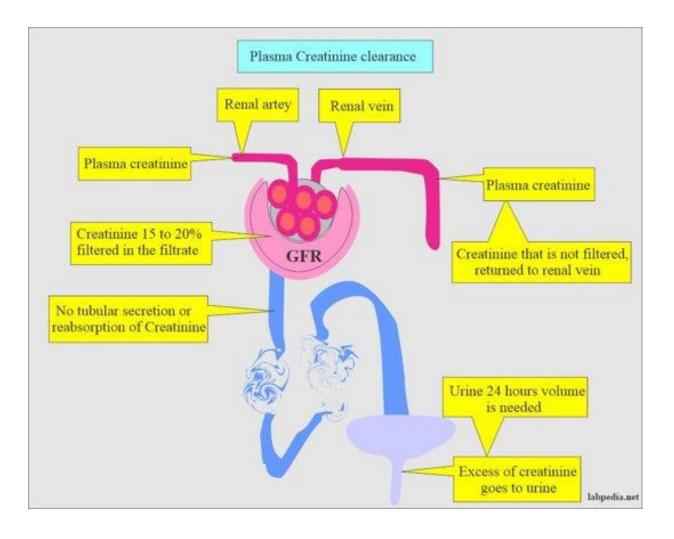
Elevated levels?

https://perniciousanemia.org/b12/toxicity/


Creatinine

Internal Medicine Residency Spokane

Normal Creatinine


Reference Range:

Factors That Affect Normal Creatinine

- Muscle mass
- ➤ Intake (protein rich foods)
- > Tubular Filtration

Labpedia.net

But Why Is It Low?

- > Malnutrition
- ➤ Low BMI/muscle mass
- ➤ Quadriplegia
- ➤ Amputations
- > Cirrhosis
- ➤ Vegetarian diet
- > Neuromuscular disorders
- > Low can be normal IF it is stable

For Example: 61y F w/ DM2, frail s/p R AKA

Creatinine	0.50 - 1.00 mg/dL	0.60
BUN	8 - 20 mg/dL	17
omment: Males and females	for random glucose resu	lt: >20
Glucose	74 - 100 mg/dL	362 ^
Anion Gap	5 - 16 mmol/L	9
CO2	22 - 32 mmol/L	27
Cl	101 - 111 mmol/L	99 🗸
K	3.6 - 5.3 mmol/L	3.8
Na	136 - 144 mmol/L	135 ✔

For Example: 61y F w/ DM2, frail w/ RLE AKA

How About Now?

Na	136 - 144 mmol/L	135 ✔	143 ^R	141 R
К	3.6 - 5.3 mmol/L	3.8	3.6 ^R	2.9 V R
Cl	101 - 111 mmol/L	99 🗸	105 ^R	103 ^R
CO2	22 - 32 mmol/L	27	27 ^R	25 ^R
Anion Gap	5 - 16 mmol/L	9	11	13
Glucose	74 - 100 mg/dL	362 ^	266 ^ R	248 ^ R
omment: Males and females	for random glucose resul	lt: >200 mg/dL diagn	ostic of diabetes i	f hypergl
BUN	8 - 20 mg/dL	17	13 ^R	12 ^R
Creatinine	0.50 - 1.00 mg/dL	0.60	0.33 ∨ ^R	0.32 ∨ R
Calcium	8.9 - 10.3 mg/dL	9.5	8.8 ^R	8.6 ^R

GFR and Albuminuria

Microalbumin can be helpful for risk stratification

				Persistent albuminuria categories description and range		
			A1	A2	А3	
				Normal to mildly increased	Moderately increased	Severely increased
				<30 mg/g <3 mg/mmol	30-300 mg/g 3-30 mg/mmol	>300 mg/g >30 mg/mmol
12)	G1	Normal or high	≥90	1 if CKD	1	2
/1.73 rr nge	G2	Mildly decreased	60-89	1 if CKD	1	2
nL/min and ra	G3a	Mildly to moderately decreased	45-59	1	2	3
GFR categories (mL/min/1.73 m²) description and range	G3b	Moderately to severely decreased	30-44	2	3	3
R categ des	G4	Severely decreased	15-29	3	3	4+
98	G5	Kidney failure	<15	4+	4+	4+

GFR and albuminuria grid to reflect the risk of progression by intensity of coloring (green, yellow, orange, red, deep red). The numbers in the boxes are a guide to the frequency of monitoring (number of times per year).

Uptodate

Confirming GFR

Serum Cystatin C

Inulin (very expensive)

Iohexol or EDTA

24 hour Cr Cl

Serum Cystatin

- 2021 CKD-EPI creatinine-cystatin C equation
 - Require info: Age, serum Cr and serum cystatin
 - More specific when estimating GFR < 60
 - Less variation between gender and race
 - Less association with body mass

24-hr Cr Clearance

- Limited by accuracy of urine collection
- Cumbersome to preform

Box 1

Settings in which creatinine-based eGFR should be confirmed:

- Factors present that affect endogenous sources of creatinine:
 - Very high muscle mass
 - Very low muscle mass (eg, chronic heart failure, amputations, neuromuscular disease)
 - Advanced liver disease
- Factors present that affect exogenous sources of creatinine:
 - Very high animal protein diet
- Very low-protein diet (eg, vegetarian, vegan)
- In patients with creatinine based-eGFR 45 to 59 mL/min/1.73 m² and no other evidence of kidney disease (eg, no albuminuria or radiologic abnormality)
- In settings where accuracy of the GFR estimate is more important:
 - Potential kidney donors
 - When treatment is planned with a medication that is renally cleared, has significant toxicity, and a narrow therapeutic range (eg, some chemotherapy agents)

Key Points

Liver Enzymes

- -Normal ALT range: 29-33 IU/I for males, 19-25 IU/I for females
- -Normal ALT does not exclude liver disease

Ferritin

- Ferritin cutoff of 45 ng/mL in general population
- HFrEF: Ferritin <100 OR Ferritin <300 + Tsat <20%
- CKD: Tsat <30% AND ferritin <500 ng/mL

Key Points

Creatinine

- -Pay attention to Cr trend rather than individual value
- -Consider cystatin to confirm GFR when in doubt

Vitamin B12

- Borderline levels require further evaluation with MMA +/- homocysteine
- High levels might indicate systemic disease but do not indicate need to stop
- Can present unexpectedly (depression, fatigue, erectile dysfunction)

References

- 1. Ankar, A., & Kumar, A. (2022, June 5). Vitamin B12 deficiency. National Center for Biotechnology Information. Retrieved September 18, 2022, from https://pubmed.ncbi.nlm.nih.gov/28722952/
- 2. Kwo, P. Y., Cohen, S. M., & Lim, J. K. (2017). ACG clinical guideline: Evaluation of Abnormal Liver chemistries. American Journal of Gastroenterology, 112(1), 18–35. https://doi.org/10.1038/ajg.2016.517
- 3. 1. Ko, Cynthia W., et al. "AGA clinical practice guidelines on the gastrointestinal evaluation of iron deficiency anemia." *Gastroenterology* 159.3 (2020): 1085-1094.
- 4. 3. Yancy, Clyde W., et al. "2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America." *Journal of the American College of Cardiology* 70.6 (2017): 776-803.
- **5.** Kidney International Supplements (2012) 2, 281; doi:10.1038/kisup.2012.39
- 6. Wolffenbuttel, B. H. R., Wouters, H. J. C. M., Heiner-Fokkema, M. R., & van der Klauw, M. M. (2019). The many faces of cobalamin (vitamin B12) deficiency. *Mayo Clinic Proceedings: Innovations, Quality & Outcomes*, 3(2), 200–214. https://doi.org/10.1016/j.mayocpiqo.2019.03.002
- 3. Sukumar, N., & Saravanan, P. (2019). Investigating vitamin B12 deficiency. *BMJ*, I1865. https://doi.org/10.1136/bmj.I1865
- **8.** Jammal, M., Deneuville, T., Mario, N., Tiev, K., Tolédano, C., Josselin-Mahr, L., Pateron, D., Guidet, B., Retbi, A., Taright, N., Cabane, J., & Kettaneh, A. (2013). Concentration plasmatique élevée de la Vitamine B12: Un indicateur des maladies hépatiques ou tumorales. *La Revue De Médecine Interne*, *34*(6), 337–341. https://doi.org/10.1016/j.revmed.2012.10.006
- 9. Means, R. T. (2021, June 16). Causes and pathophysiology of vitamin B12 and folate deficiencies. (K. M. Fairfield & J. S. Tirnauer, Eds.). Retrieved July 26, 2022, from https://www-uptodate-com.offcampus.lib.washington.edu/contents/causes-and-pathophysiology-of-vitamin-b12-and-folate-deficiencies?search=elevated%20vitamin%20B12%20level§ionRank=1&usage_type=default&anchor=H1904875450&source=machineLearning&selectedTitle=1~150&display_rank=1#H1904875450.
- 10. Robert, C., & Brown, D. L. (2003). Vitamin B12 Deficiency. American Family Physician, 67(5), 979–986.

References Continued

- 11. Coll E, Botey A, Alvarez L, et al. Serum cystatin C as a new marker for noninvasive estimation of glomerular filtration rate and as a marker for early renal impairment. Am J Kidney Dis 2000; 36:29.
- 13. Hoek FJ, Kemperman FA, Krediet RT. A comparison between cystatin C, plasma creatinine and the Cockcroft and Gault formula for the estimation of glomerular filtration rate. Nephrol Dial Transplant 2003; 18:2024.
- 14. Groesbeck D, Köttgen A, Parekh R, et al. Age, gender, and race effects on cystatin C levels in US adolescents. Clin J Am Soc Nephrol 2008; 3:1777. Macdonald J, Marcora S, Jibani M, et al. GFR estimation using cystatin C is not independent of body composition. Am J Kidney Dis 2006; 48:712.
- 15. "Creatinine (Serum Creatinine)." Labpedia.net, 11 Feb. 2022, https://labpedia.net/creatinine-serum-creatinine/.