An invasive Eurasian lineage of the common reed, Phragmites
australis, is known to have plastic responses to predicted future
conditions of atmospheric CO, and soil N pollution (Mozdzer and
Megonigal 2012). In greenhouse conditions, elevated CO, increased
Phragmites growth both above and belowground, suggesting it
may be a better competitor in field conditions. We determined
functional trait responses of Phragmites australis from a
factorial CO, x N field experiment to evaluate the effects of
global change factors on canopy structure and carbon fixation.
We addressed the following questions:

» How does elevated CO, and N pollution affect
Phragmites functional traits?

» How do global change factors influence plant functional
traits affecting carbon fixation?
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Leaf area: 9 per treatment
Internode length: 10 plants in situ

Vertical growth rate: 15 per chamber
Relative Length Growth Rate (RLGR) modeled as logistic growth (Clevering et al. 2001)

Canopy structure: 5 cm layers of leaf area and position
Leaf senescence: Tracked in 9 plants per treatment
Photosynthetic rates: Monthly 9 per treatment
Relative chlorophyll index: 15 per chamber
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Figure 6: Amount of carbon fixed per day, per m? of monotypic Phragmites. Modeled using data SERC Phytoplankton Lab NSF-LTREB
described in Methodology, along with PPFD (light) time series data at the SERC dock. f Josh Shapiro, PhD Bryn Mawr College
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