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Abstract

Recent advances in remote sensing such as increased availability of high-
spatial-resolution data and new processing techniques promise to broaden 

the applicability of remote sensing to wetland scientists and managers. We 
aim to introduce wetland practitioners to several cutting-edge remote sensing 
imagery analysis techniques now available; illustrate new innovative uses of 
these techniques by highlighting four case studies where high spatial techniques 
were employed; and finally to identify the unique abilities, challenges, and 
limitations of these remote sensing tools. We present four case studies of high 
spatial resolution remote sensing data used in wetland research applications, 
each using different data sources and processing techniques. These case studies 
illustrate the use of multispectral and historical aerial photography, aerial 
LiDAR, and Terrestrial Laser Scanning, to investigate invasive species, land 
use change, and mapping in wetland systems. We demonstrate how emergent 
remote sensing technologies offer both unique abilities and unique challenges. 
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Introduction

Since the early 1970s, scientists have mapped, monitored, and studied wetland 
ecosystems using remote sensing techniques, which continue to facilitate 
understanding of wetland ecosystems at multiple spatial scales (Ozesmi and 
Bauer 2002). Unfortunately, the spatial resolution of many remotely sensed 
data is too coarse to resolve individual wetlands and is not often useful in 
wetland science. For example, 88 % of wetlands in the prairie pothole region of 
North Dakota are smaller than 0.4 hectares (Gilmer et al. 1980),thus, satellite 
imagery with a 30 meter pixel size (e.g., Landsat) cannot map these wetlands. 
Recent advancements in computer processing, sensor capability, and analytical 
techniques, coupled with wider availability of remotely sensed data of finer 
spatial, temporal, and spectral resolutions promise to broaden the applicability 
of remote sensing to wetland scientists and managers. - Page 12 -
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The trend towards hyper-resolution of remote sensing has always been part of 
the discipline; however, the aforementioned factors have recently accelerated 
this trend. Thus, Chambers et al. (2007) defined the term ‘hyper’ in remote 
sensing, where the spatial dimension is referred to as hyperspatial, spectral 
dimension as hyperspectral and temporal dimension as hypertemporal. Data 
that resolve differences in scene properties at a location separated by 1 meter 
or less, such as: aerial photography, aerial, terrestrial and mobile light detection 
and ranging (LiDAR), and multispectral satellite imagery (e.g., IKONOS 
and Quickbird) have been referred to as hyperspatial (Chambers et al. 2007; 
Greenberg et al. 2005; Turner et al. 2003). 

Hyperspatial data can include historical black and white aerial photography, 
a temporally rich resource allowing for studies of change detection in 
wetlands. Although the historical frequency of hyperspatial data is not in the 
hypertemporal realm, the ability to look at landscapes as early as the 1930s is 
appealing and the data frequency can facilitate multitemporal analysis such 
as decadal change detection studies. Much of the historical hyperspatial aerial 
photography data are in the public domain making it an attractive choice to 
research projects struggling with funding limitations (Moskal et al. 2011). 
With the advent of hyperspatial data availability, new tools and methodologies 
for working with these types of data are necessary; moreover, it is important 
to understand how traditional per-pixel based techniques developed for coarse 
spatial resolution imagery (e.g., Landsat) can be applied to hyperspatial data. 
Therefore, we focus on hyperspatial resolution remote sensing application in 
wetland sciences.

We aim to introduce wetland practitioners to several cutting-edge remote 
sensing techniques now available; illustrate new innovative uses of these 
techniques by highlighting four case studies where hyperspatial techniques 
were employed; and finally to identify the unique abilities, challenges, and 
limitations of these remote sensing methods. 

Specifically we present the following case studies:
• Mapping of an invasive wetland plant using pixel-based classification 

of hyperspatial-resolution aerial photography.
• Investigating historical changes to wetlands using Object-Based 

Image Analysis of hyperspatial-resolution aerial photographs with low 
spectral resolution.

• Mapping montane wetlands using Object-Based Image Analysis and 
aerial LiDAR.

• Mapping and monitoring intertidal microtopography using Terrestrial 
Laser Scanning.
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Case Study 1: Using remote sensing to map Phragmites australis 
in Great Salt Lake wetlands

In this case study we used pixel-based classification (PBC) of hyperspatial 
multispectral aerial imagery to map the distribution of the invasive strain of the 
wetland grass Phragmites australis (herein Phragmites). Phragmites is a widespread 
invasive wetland plant across North America, with large populations in the 
northeast, great lakes region and areas in the west (Bourgeau-Chavez et al. 
2012; Kettenring et al. 2012; Kulmatiski et al. 2011; Saltonstall 2002). It is a 
tall, clonal, perennial grass that creates dense monocultures, displaces beneficial 
native wetland vegetation, fragments marshes, and can reduce the quality of the 
habitat and ecosystem services provided by wetlands (Chambers et al. 2008; 
Silliman and Bertness 2004). Phragmites has become a major problem in the 
wetlands of the Great Salt Lake (GSL), Utah. Despite significant resources 
spent controlling this plant on public and private lands in Utah, the full extent 
of Phragmites around the GSL wetlands remains unknown (Kettenring 2012). 
Previous mapping efforts using field surveys and low-resolution air photos 
were outdated (2006), limited in extent and at a coarse resolution. Phragmites-
dominated marshes are dense and difficult to walk through, making field 
surveys of Phragmites challenging.  Additionally, these marshes are often hard to 
access due to deep water, water control structures, and land ownership issues. 
These reasons underscore the value of using remote sensing techniques to 
determine current extent of Phragmites around the lake.

Pixel Based Classification 

Pixel based classification (PBC) of remote sensing imagery is one of the 
simplest, best understood, and most commonly used classification techniques 
for aerial imagery (Jones and Vaughn 2010), and has been used for a variety 
of wetland research applications. PBC classifies landscape features using their 
spectral signatures, the intensity of reflected and emitted radiation of different 
wavelengths. With coarser-resolution imagery, such as satellite imagery, PBC 
can often only classify vegetation types into broad categories. However, as finer-
resolution multispectral aerial imagery becomes more available, PBC can be 
used to differentiate between wetland plant species. 

With PBC, each pixel is assigned a class based on its spectral signature. We used 
supervised classification techniques, in which the user selects ‘training pixels’ of 
a known class type (e.g., Phragmites marshes). The computer then assigns each 
remaining pixel to the class of the training pixel of greatest spectral similarity.
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Process

In May and June 2011, we acquired hyperspatial multispectral aerial imagery 
for all major wetland areas around the GSL. We used the Utah State University 
Remote Sensing Services lab Cessna TP206 aircraft, which is set up for remote 
sensing data collection, and collected imagery specifically for this project. 
Images are one-meter pixel resolution, with imagery in four spectral bands- red, 
green, blue, and near-infrared. We acquired data in late spring, an ideal time to 
identify Phragmites using remote sensing, because of the differences in growth 
stages between Phragmites and other wetland plants (Maheu-Giroux and Blois 
2005; Neale et al. 2007). 

Following image acquisition, we pre-processed the aerial images using ERDAS 
Imagine 2010 software (“Intergraph, Geospatial Operations, Norcross, GA). 
We identified training pixels from ground-truthed data by visiting major 
wetland units in the summer and fall of 2011, and again in the spring of 2012. 
We used PBC to classify vegetation into nine groups based on the dominant 
species and/or communities to determine the distribution of wetland plant 
species of interest: Phragmites australis (common reed), Typha spp. (cattail), 
Distichlis spicata (saltgrass), Salicornia europeae (pickleweed), Schoenoplectus 
acutus (hardstem bulrush), playa wetlands, native emergent wetland, upland, 
and open water. We used ground-truthed points that we had set aside and not 
used as training pixels to evaluate the accuracy of the classification.

Our vegetation map represents the most extensive and detailed mapping 
of Phragmites around the GSL to date. Our results indicate a substantial 
Phragmites invasion of key federal, state, and private wetland areas around GSL. 
Management of these wetlands for waterfowl habitat should benefit from our 
documentation of Phragmites distribution. We created an interactive online 
website that displays the imagery, and allows users to draw an area of interest 
and return the amount of Phragmites or other wetland vegetation in that area 
(http://maps.gis.usu.edu/gslw/index.html). The resulting vegetation data will 
also be used for future work to determine correlations between environmental 
and anthropogenic variables and the presence of Phragmites. 

Considerations

Pixel-based classification and hyperspatial imagery offered a time and cost 
effective method for determining the extent of an invasive wetland plant that 
would have been difficult to survey in the field due to dense vegetation, varying 
water level and access issues from a patchwork of land ownership around the 
GSL. However, in our study there were several areas where management actions 
such as early season mowing, breached dikes, or previous herbicide applications 
caused classification errors. These areas were generally easily identifiable 
because of their large size, and were manually recoded based on verification - Page 15 -
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from field visits, land manager information and aerial imagery. Despite these 
complications, using hyperspatial remote sensing to map wetland vegetation 
around the GSL proved to be a better solution for determining the current 
extent of Phragmites distribution as opposed to labor intensive comprehensive 
wetland field surveys. PBC was successful because we were able to acquire 
multispectral imagery at a high resolution. Hyperspatial multispectral imagery 
can be somewhat expensive to acquire, but is relatively efficient to process 
using PBC methods. While our aerial imagery was acquired specifically for this 
project, there are often publically available hyperspatial image datasets. For 
example, the state of Utah collects hyperspatial 4-band multispectral imagery 
every two to three years (Utah AGRC), and other states may have similar 
programs. More readily available, true-color aerial photographs do not allow for 
as much spectral differentiation, and would not work as well for differentiating 
between wetland species. 

Case Study 2: Understanding historical ecology using aerial 
photographs and Object Based Image Analysis

In this study we sought to quantify long-term decadal changes in wetlands in 
a region of semi-arid sage shrub-steppe in eastern Washington State, and to 
understand how trends in the surrounding land uses influenced these wetlands. 
In the study area, conversions of the sage shrub to livestock grazing lands and 
agricultural uses over the past century have affected water resources, native 
plant species and wildlife habitats, generally leading to a decline in species 
populations (Foster Creek Conservation District 2013; Mitsch and Gosselink 
2007). We hoped to identify areas where wetlands persisted and to identify 
the long-term factors that influenced them. However, understanding historical 
wetland conditions and identifying the drivers of wetland change across a large 
landscape can be challenging. Evidence of past conditions is often ephemeral, 
as when a wetland has been plowed over, or non-existent, because field data on 
wetland conditions were never collected.

Historical aerial photographs offer the unique opportunity to see and 
measure temporal changes in wetlands and the surrounding land uses. These 
photographs allow investigations into past wetland conditions before satellite 
imagery became available. They are available to the public from archives in 
governmental agencies and university libraries, at hyperspatial resolutions and at 
modest, if any, cost. 

The limited spectral information contained in black and white historical aerial 
photographs and lack of near-infrared coverage, has limited their use to projects 
where manual photo interpretation and hand delineations were appropriate, 
for example, the National Wetland Inventory (NWI). In this case study we 
used Object-Based Image Analysis (OBIA) methods to develop a new way to 
use these historical images to quantify changes in wetlands. We combined our - Page 16 -
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OBIA classifications of wetland ponds and agricultural activities with County 
precipitation records and WA State Geographic Information System (GIS) 
geology layers to develop a more complete picture of the historic ecology of 
these wetlands.

Object-Based Image Analysis

Object-Based Image Analysis (OBIA) is a technique to derive “meaningful 
objects” from a raster dataset by delineating or classifying areas with similar 
characteristics (Blaschke 2010). These “objects” can range from features of 
interest in the landscape to critical medical anomalies in a tissue biopsy. OBIA 
differs from the traditional PBC technique in that it mimics human pattern 
recognition. The first step in an OBIA process is image segmentation, which 
aggregates pixels into objects based on their spectral similarities. After the 
initial segmentation by the computer, the human analyst begins an iterative 
and heuristic process to select spectral characteristics such as color as well as 
spatial characteristics such as shape and texture that will best classify the objects 
of interest. The analyst builds a unique computer algorithm, called a ruleset, 
using the characteristics that best separate the classes of interest. The primary 
differences between OBIA and PBC are the initial segmentation, and OBIA 
classification of multi-pixel objects as opposed to individual pixels.

Process

In this study, we classified the open water ponds and plowed agricultural fields 
in a 20,200 hectare study area, known as the channeled scablands. We used five 
sets of images: historic, black and white aerial photographs from 1955, 1965, 
1978, and 1991, and true color National Agriculture Imagery Program (NAIP) 
imagery (red, green blue) from 2006 obtained through the USDA Farm Service 
Agency. This study focused on changes to wetland ponds during this time span. 
The ponds were classified as a central feature anchoring the seasonal wetlands 
surrounding them. The “plowed fields” classification defined a land use where 
the native sage and shrub-steppe vegetation had been completely destroyed, 
and land cover no longer had the surface hydrology and water infiltration 
characteristics of the native plant coverage (Figure 1).   

Our approach mapped and quantified changing water resources and related 
wetland habitats across the landscape. It indicated influences on the variability 
of surface and ground water flows around the ponds from the nearby land uses 
and vegetation conditions. We also spatially correlated locations of ponds and 
wetlands that persisted and varied less through the decades with areas of intact 
native sage shrub-steppe vegetation. These persistent ponds and sage shrub 
habitats were underlain with thin basaltic soils, which are both less porous for 
ground water penetration, and historically have limited plowed agriculture.
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Figure 1: Black and white aerial photograph from 1955 showing high resolution of historical 
imagery with ponds and agricultural fields classifications.    

Considerations

Although the classifications were limited to ponds and plowed fields in part due 
to the limits of the black and white imagery for this analysis, OBIA allowed 
historical aerial images to be used in a new way and to quantify wetland changes 
over a much longer period of time than previous work. Although the historical 
imagery provides only one band of image information with which to discern 
critical classification characteristics such as size, shape, texture and pattern, 
it often offers wetland researchers several additional dates of hyperspatial 
images for analysis. In contrast, though a full color infrared image will offer 
the analyst and the software red, green, blue, and infrared bands as well as the 
ratios between them with which to develop a classification algorithm; it may 
lack either the resolution or the historical reach needed to answer all research 
questions.     

Challenges with using historical imagery include repurposing imagery that 
was originally taken for other goals, as well as finding archived imagery. These 
individual photographs required extensive preprocessing to standardize the 
gray-scale variability between images and then to mosaic the image tiles into a 
single raster for the complete study area.
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Case Study 3: Mapping montane wetlands using Object-Based 
Image Analysis and aerial LiDAR.

Comprehensive wetland inventories are a necessary first step in protecting 
and preserving wetlands. The National Wetland Inventory (NWI), the 
most comprehensive wetland inventory in the U.S., was created by manual 
interpretation of hyperspatial aerial photos. In some areas the NWI can be used 
as a reliable source, while in other areas it is either out-of-date or inaccurate 
(Morrissey and Sweeney 2006; Tiner 1990). The accuracy of the NWI varies 
across the U.S., with omitted wetlands being particularly common in forested 
areas where the forested canopy obstructs the aerial view of the wetlands 
beneath (Morrissey and Sweeney 2006). This problem is exacerbated in areas 
that contain high densities of evergreens, as the persistent forest canopy 
never allows an unobstructed view of the ground. Additionally, tree canopy 
and complex topography create shadows that can impede the photograph 
interpreter’s view of wetlands.  

Previous research mapping wetlands in eastern Washington proved OBIA 
to be an accurate (overall accuracy was 89 %), yet affordable technique to 
automate mapping of semi-arid wetlands (Halabisky et al. 2011); however, this 
project focused on non-forested areas. To adapt this method to map wetlands 
in forested and mountainous areas with steep topography and tree canopy, we 
used data products derived from aerial LiDAR and combined them with aerial 
imagery and thematic data to map wetlands in Mt. Rainier National Park.

Aerial LiDAR

 LiDAR is an active remote sensor that emits laser light toward a target and 
measures its return time to the sensor. Using this information the sensor is able 
to record a three-dimensional coordinate of the objects that the laser light hits. 
Scanning a surface with LiDAR produces a cloud of such coordinates, known 
as a point cloud. LiDAR allows the analyst to identify wetlands that would 
otherwise be obscured by trees or shadows. 

Typically LiDAR is delivered to a researcher as three unique data products; a 
ground model, a canopy surface model, and an intensity image. Raw data are 
also delivered, and should be archived as future processing and algorithms can 
improve the applicability of the data. The ground model provides hyperspatial 
detail of the topography. In our instance, we were able to detect even the 
decimeter-scale changes in elevation surrounding small ponds within our study 
area. A canopy surface model provides a surface of the highest objects in the 
scene (e.g., tree canopy). Finally, an intensity image provides the intensity 
of the reflected laser energy, which is typically an infrared wavelength. This 
intensity varies across a landscape as the laser pulses come in contact with 
different materials. The patterns evident within intensity images can be used to 
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identify wetlands. Because water absorbs light energy it often has low intensity 
values or will even contain “no data” if the light is fully absorbed by water. 
On the other hand, wetlands that do not have standing water during the time 
of LiDAR acquisition may highly reflect infrared light due to the presence of 
photosynthetic wetland vegetation.

Process

 In addition to the LiDAR data products available to us, we created several data 
layers to assist with the classification. We used the LiDAR ground model to 
create a slope index to help us highlight areas of low or no slope and a canopy 
height model, by subtracting the LiDAR ground model from the canopy 
surface model, which helped us to detect wetlands with low or no vegetation.
 
To map wetlands within our study area we analyzed the ground model, 
canopy surface model, canopy height model, intensity image, aerial imagery, 
and GIS layers of park roads and trails. We used OBIA to segment an image 
composed of the aforementioned data, and then created and applied an object 
classification rule set to delineate and classify wetlands in the study area. Not 
only could we detect substantially more wetlands than the NWI, we could also 
produce a finer, more accurate delineation (Figure 2). 

Figure 2: Comparison of the National Wetland Inventory to semi-automated classification of 
montane wetlands using LiDAR and OBIA.
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Considerations

OBIA software programs, such as eCognition (Trimble Navigation, Ltd, 
Sunnyvale, CA), allow the user to detect patterns within multiple data inputs. 
This can improve upon photo interpretation because it allows identification 
of patterns that might otherwise be hard to detect manually from so many 
different data layers. This was helpful for our project which incorporated many 
data input layers describing wetland characteristics such as slope and canopy 
height.

Some challenges inherent in LiDAR analyses result from the technology’s 
relative youth.  LiDAR intensity data commonly fluctuates across a scene due 
to internal sensor errors, rather than actual target properties. Recent advances 
allow normalization of LiDAR intensity across a LiDAR acquisition (Vain and 
Kaasalainen 2011), but such data are not yet commonly available. Intensity 
values cannot be easily used to detect more subtle patterns such as specific 
vegetation communities or individual plant species because few datasets are 
normalized.

When studying forested areas, LiDAR data must be acquired at a high enough 
density to penetrate the forest canopy. Low-density LiDAR, typically acquired 
for topographic applications, will be unable to detect forested wetlands as the 
laser will be unlikely to reach the ground below the canopy. Thus, as with the 
decadal aerial photography change analysis, one can find challenges using data 
collected for a different application.

An additional challenge is that the output dataset from an OBIA process 
delineates the pixel edges, creating highly detailed wetland polygons with many 
vertices. This differs from manual delineation, which simplifies the wetland 
border, using significantly fewer vertices. Although the increased detail provided 
by OBIA is usually more accurate, it creates a large and unwieldy dataset that 
can be difficult to display in GIS. Finally, although this technique can be more 
cost effective than manual photo interpretation, the high cost of both LiDAR 
data acquisition and OBIA software programs, and the computational hardware 
requirements, limit their availability to many users.

Case Study 4: Terrestrial Laser Scanning of Intertidal Habitats

Intertidal estuarine topography, even at centimeter to decimeter scales, can 
profoundly affect biological communities by affecting local tidal inundation 
patterns and temperature (eg., Garrity 1984), but it is particularly difficult 
to measure. Soft, unconsolidated sediment hinders direct measurement both 
by limiting travel, and by making it difficult to measure elevations without 
disturbing or compacting sediments. Unfortunately, remote measurements are 
also problematic. Conventional aerial LiDAR data must be obtained during 
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a low tide (e.g., Chust et al. 2008), which precludes the use of much readily-
available LiDAR data. Even during a low tide exposure, standing water and 
saturated soils reduce the efficacy of the infrared lasers used in most aerial 
LiDAR applications. The shallow water depth at such locations inhibits sonar 
surveys. 

Terrestrial Laser Scanning (TLS), also known as ground-based LiDAR, may 
potentially overcome some of the aforementioned challenges to topographic 
measurement in estuarine wetlands. These tripod-mounted instruments are 
capable of mapping surfaces with sub-centimeter precision (Vierling et al. 
2008). Just as aerial LiDAR, TLS measures the time of flight of emitted laser 
pulses to create three dimensional point clouds of a surface (Figure 3). With this 
technique, sediment disturbance can be limited to the scanner location while 
remotely measuring undisturbed areas.

Process

An invasive, intertidal seagrass, Zostera japonica, appears to be influenced by 
centimeter-scale topography when growing alongside its native congener, 
Zostera marina (Shafer 2007). To elucidate this relationship, we first sought to 
quantify the relationship between local microtopographic relief and cover of 
these two species. Second, we sought to quantify spatiotemporal variability in 
the patterns of intertidal microtopographic relief at the study site.  
We created fine scale topographic maps, digital elevation models (DEMs), 
of the study site from TLS surveys over three years. From these DEMs, we 
calculated a Bathymetric Position Index (BPI), a scalable index of topographic 

Figure 3: Example of TLS scan data. Note that the scan resolves footprints in left panel. The 
right panel shows a close up intensity image of a 0.5 meter X 0.5 meter PVC quadrat.
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position (Lunblad 2004). With the DEMs and BPI maps, we examined 
the relationships between microtopographic setting and species cover, and 
investigated temporal changes in site topography. 

During each mapping visit at our study site, we conducted multiple TLS scans 
from different vantage points to extend the spatial extent of our study area. 
Multiple stationary, reflective targets placed in the study site provided common 
spatial landmarks for subsequently combining scan data. We georeferenced 
scans by taking kinematic Global Positioning System (GPS) measurements at 
each reflective target during each survey.

Considerations

Despite the logistical challenges of managing the equipment required for TLS 
surveys in soft sediment intertidal environments, we could relate species cover 
to centimeter scale topographic relief at the site.

TLS data acquisition may be limited by characteristics of the landscape, and by 
characteristics of the instrument. Intertidal mudflats are characteristically wet, 
and periodically submerged. Although saturated sediments did not inhibit data 
acquisition in this study, standing water did. Pools of standing water greatly 
reduced TLS return density, and introduced occasional reflection artifacts.

A common instrument-specific limitation of TLS is its stationary tripod 
mount. Scanner height limits data acquisition because of its fixed vantage 
point. Data-point spacing increases as target range increases because the vertical 
and horizontal angle between successive scan lines is fixed within a scan. This 
limited our useful scan radius to approximately 50 meters. Some researchers 
have extended the useful range of scans by elevating the scanner to considerable 
heights above the sediment surface (e.g., Anderson et al. 2009).

Another challenge presented by the TLS vantage point is shadowing created by 
topography, or erect vegetation. Although shadowing was nonexistent in our 
application because of the gentle nature of site topography and the lack of erect 
vegetation, it could pose a serious challenge in densely vegetated sites (Anderson 
et al. 2009). To overcome this challenge, the researcher may increase the point 
density of scans to penetrate more vegetation gaps, and scan from multiple 
vantage points.

Quantification of temporal change in microtopography proved more difficult 
than relating species to topography. Quantification of temporal change requires 
the spatial alignment of scans from different dates. This may be done by 
creating persistent, stable landmarks in the study area that can be referenced 
at different survey dates, or by georeferencing scans from different dates with 
GPS, as we did. The dynamic nature of an intertidal environment makes the - Page 23 -

WSP
June 2013

SECTION 1

WPS

RESEARCH 



former approach challenging, although permanent monuments can be created 
in tidelands (Boumans 1993). GPS was our greatest source of positional error 
in our workflow. Longer GPS observations should yield some improvement in 
GPS, error, but the tidal regime and security of a study site will determine the 
feasibility of this approach.

Perhaps the greatest challenge of many TLS-based studies is determining how to 
use the acquired data. A “shoot first and ask questions later” approach will likely 
cause frustration. TLS data are dense and detailed (Figure 3), and a researcher 
must first plan on how to extract useful summaries or measurements from the 
data. This can be both a conceptually and practically difficult problem.

Discussion

Hyperspatial remote sensing promises to provide wetland scientists and 
managers with data at spatial scales that are relevant to wetland issues. Like 
traditional satellite based remote sensing, hyperspatial remote sensing allows 
for non-destructive sampling, measurements of great spatial extent, and 
investigation of locations that are difficult to access in person. Hyperspatial 
remote sensing and the new analysis techniques that accompany it additionally 
provide unique opportunities and unique challenges to those who employ 
them. 

By virtue of the finer spatial detail afforded by hyperspatial remote sensing, 
the size of objects that can be detected and mapped has decreased, sometimes 
enough to resolve individual study organisms. Improved resolution allows 
the study of smaller wetlands, which are both numerous, and perhaps more 
vulnerable than larger wetlands (Tiner 2003). Although the spatial resolution 
of data has grown finer, the spatial extent remains broad. This wealth of data 
allows for multi-scale investigations of ecological phenomena.

The fine spatial resolution of hyperspatial remote sensing data is a double-edged 
sword. Increased information density yields novel insight, but requires greater 
storage capacity and processing power, and often more complex analyses. For 
example, an aerial image with a 1 meter pixel resolution is more than 300 times 
larger than one with the 30 meter per pixel resolution typical of most Landsat 
satellite imagery (Table 1). These large file sizes result in time-consuming 
computationally expensive processing. While continuing improvements 
in computational ability and data storage will ameliorate one aspect of the 
problem, file size is not the only challenge of too much information

The great detail in hyperspatial data includes information irrelevant to the 
investigator. Hyperspatial aerial photography resolves shadows that would 
be averaged in a 30 meter pixel. This kind of detail often necessitates more 
complex analytical procedures such as OBIA. TLS data may map every limb of - Page 24 -
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Data Type
File 
Size/

Hectare

Spatial Resolution/
Spatial Extent Strengths Weaknesses

Hyperspatial Data

Black and white 
aerial
photography ~140 kb

0.25m/varies based 
on camera type and 
flight parameters

Inexpensive to 
acquire, historical 
coverage as early as 
the 1930’s

Spectrally limited, 
rarely acquired after 
year 2000

True color aerial 
photography ~38 kb 1m or finer Publicly available 

imagery

Radial distortion, 
not radiometrically 
standardized

Multispectral aerial 
imagery

 ~250 
kb

1 m/ based on 
camera and flight 
parameters; example: 
50 km2 at 1:30,000 
scale

More spectral 
bands than true 
color photographs

Sometimes expensive 
to acquire

Aerial LiDAR ~5 MB

Variable, but mostly 
1 m to sub m, flight 
swaths cover up to 
500 m

Provides 3-D data. 
Not impacted by 
shadows

File size, not always 
available

TLS ~ 200 
MB

Variable, can be sub-
centimeter and cover 
areas as large as 20 m 
radius

Fine spatial 
resolution

File size, acquisition 
logistics, issues with 
occlusion

Multispectral Satellite Imagery

Example: Landsat ~114 b 30 m/~185 km2

Widely available, 
free to download, 
global coverage, 
historical coverage

Low spatial resolution

Example: 
IKONOS ~300 kb 1m to 4m/11 km2

Widely available, 
free to download, 
global coverage, 
historical coverage

Availability varies

Table 1: Comparison of file size, spatial resolution and potential value of hyperspatial 
remotely sensed data. Landsat and IKONOS are included for comparison. 

a tree (Moskal and Zheng 2011) or individual blades of a sedge (Moskal and 
Zheng 2012). Such detail requires data summary, just as plot-based surveys 
summarize vegetation for a site. It is imperative for a researcher to have a 
hypothesis and an analytical plan before beginning to collect these data.

PBC can be a time and cost-effective option for classification of high resolution 
remote sensing imagery. PBC is one of the most well-known and straight-
forward ways of classification of hyperspatial imagery. PBC can be an especially 
good option for institutions and agencies that focus most of their analysis in 
GIS software, as the method can be implemented in GIS such as ArcGIS 10.0 
(ESRI, Redlands, CA) without requiring a separate software package or more 
expensive programs such as ERDAS Imagine. Furthermore, spatial features 
implemented in OBIA analysis can, to some extent, be utilized in PBC with the - Page 25 -
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implementation of texture (Franklin et al. 2000). Additionally, there are open 
source software options for PBC such as GRASS (GRASS Development Team 
2012) and MultiSpec (Purdue Research Foundation 2011).

Hyperspatial resolution tends to come at a penalty to the other resolution 
dimensions applicable in remote sensing: the spectral and temporal. Although 
many hyperspatial sensors are also multispectral (collecting four or more wide 
spectral bands), there are only a few hyperspatial sensors capable of collecting 
hyperspectral data (data collected at 10 nanometer or finer spectral increments). 
Such data availability is only a recent development and very costly, especially 
for repetitive (temporal) observations. Although hyperspectral data are often 
utilized to determine vegetation species composition, and could be a useful 
indicator related to ecological condition of wetlands; few studies have employed 
this technology to study wetlands (but see Adam et al. 2009; Hestir et al. 
2008). 

Finally, some satellite hyperspatial data does not easily allow for repeat coverage 
at ‘hyper’ frequencies, such as the daily or better coverage defined by Chambers 
et al. (2007), or long term bi-weekly satellite imagery such as Advanced Very 
High Resolution Radiometer (AVHRR) or Moderate-Resolution Imaging 
Spectroradiometer (MODIS ) satellites, due to the orbit characteristics of 
the sensors. However, aerial platforms, including non-traditional platforms 
such as: kites, blimps, balloons and drones, can provide for such frequencies, 
at costs much lower to the traditional aerial platforms such as a fixed-wing 
aircraft and helicopter. For example, open technology and science initiatives 
such as “The Public Laboratory” (cite: http://publiclaboratory.org) are leading 
the incorporation of the public remote sensing community by collecting near-
infrared remote sensing data with alternative aerial platforms. Although the data 
collected have pixel sixes of much less than 1 meter, and can be deployed by 
the user at any time, the technical aspects of processing such data and acquiring 
it at large spatial extents are a technological challenge, but this is also being 
tackled by the community.
The temporal resolution of these data make them suitable for understanding 
wetland function, unfortunately, the coarse spectral and spatial resolution of 
these data has limited such research. As new remote sensing platforms such as 
unmanned aircrafts and webcams become cheaper and more common, these 
could revolutionize wetland observations the way wireless sensor networks and 
iButtons have changed in-situ field data collection.

Conclusion

The advances in high-resolution, and specifically hyperspatial remote sensing, 
computational power, and analytical techniques promise great improvements in 
the inventory, monitoring, and study of wetlands and wetland-related species. 
The applications of these technologies, only a few of which we have outlined - Page 26 -
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here, could be useful to wetland research and management in a variety of ways. 
However, wetland researchers and managers should be aware of the benefits 
and limitations of each method. Using hyperspatial remote sensing can be 
extremely useful in wetland management, given the capacity to monitor large 
spatial extents with often incredible detail, and ability to monitor areas that are 
difficult to access, which is commonly an issue with wetlands. However, cost of 
data acquisition and processing may limit the practicality of these techniques 
in some cases. Presently, mapping and studying of wetlands through the use 
of hyperspatial data is typically a secondary use and not the primary reason 
for hyperspatial data acquisition. Researchers and managers should take into 
account the spatial extent of the study area, project budget, and resolution 
needed on a case-by-case basis.
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Glossary

Classification:  To arrange into classes according to shared characteristics; an 
analyst-defined system or order for describing distinct features (such as wetland 
types, land uses, location of patches of similar vegetation).

Hyperspatial: Data that resolves differences in scene properties at a location 
separated by 1 meter or less.

Multispectral: Imagery capturing data at frequencies across the electromagnetic 
spectrum, including light from frequencies beyond the visible range (red, green, 
blue). 

Pixel based classification:  A remote sensing method which classifies objects 
using their spectral signatures, the intensity of reflected and emitted radiation 
of different wavelengths.  Each pixel is assigned a class by matching the spectral 
signature that mostly closely matches each class.   

Object-based image analysis (OBIA): A technique to classify objects based 
on shared spectral, spatial, and contextual properties. OBIA differs from the 
traditional PBC technique in that it mimics human pattern recognition and 
allows for additional object features, not just spectral information. 

LIDAR:  “Light Detection and Ranging” or “Laser Imaging Detection and 
Ranging” is an optical remote sensing technology.  It is an active remote 
sensor that emits laser light toward a target and measures its return time to the 
sensor. Using this information the sensor is able to record a three-dimensional 
coordinate of the objects that the laser light hits.  As an active remote sensor 
LIDAR differs from a passive remote sensor (such as aerial photography) 
because it measures light that is provided directly from the sensor rather than 
reflected sunlight.
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