PFAS Occurrence in New Hampshire Groundwater

Amy Doherty, PG and Kate Emma Schlosser, PE

2019 NH Waste & Contaminated Sites Conference September 11, 2019

Agenda

- I. Challenges of PFAS as emerging contaminants
- II. New MCLs/AGQS & Waste Site Approach
- III. Broad Overview of PFAS in New Hampshire
- IV. Water Supply Data
- V. Waste Site Data
- VI. PFAS Background References

I. Challenges of PFAS as Emerging Contaminants PFOA, PFNA, PFHxS, PFOS

Common Analytes (10-30)

- Precursor transformation
- Emerging science
- Proprietary mixtures
- Phase-outs and replacements

II. HWRB's Waste Site Approach to New MCLs/AGQS

*effective September 30, 2019

- Review open sites with PFAS data <70 ppt
- Prioritize sites where drinking water is potentially at risk
- Only revisit closed sites if new information indicates a need.

<u>PFAS</u>	MCL and AGQS
PFOA	12 ppt
PFOS	15 ppt
PFHxS	18 ppt
PFNA	11 ppt

For sites with new exceedances, the RP/PRP should:

- Provide alternative water
- Re-assess CSM /Delineate / Expand GMZ and update RAP / Augment Permit Monitoring

III. Broad Overview of PFAS in New Hampshire

Data collected since 2016 shows PFAS impacts to a wide range of environmental media

Statewide and Site-Specific Water Quality Data

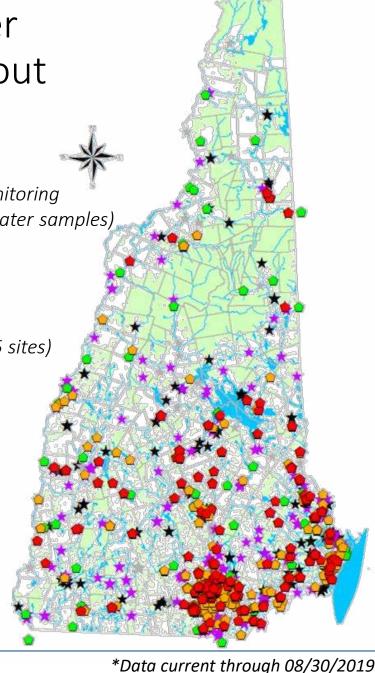
- Public water supplies
- Private drinking water
- Groundwater
- Surface water

Statewide Waste Quality Data

- Wastewater
- Wastewater sludge and biosolids
- Landfill leachate

Additional Site-Specific Data

- Soil
- Sediment
- Fish
- Loon eggs
- Air
- Stack residue

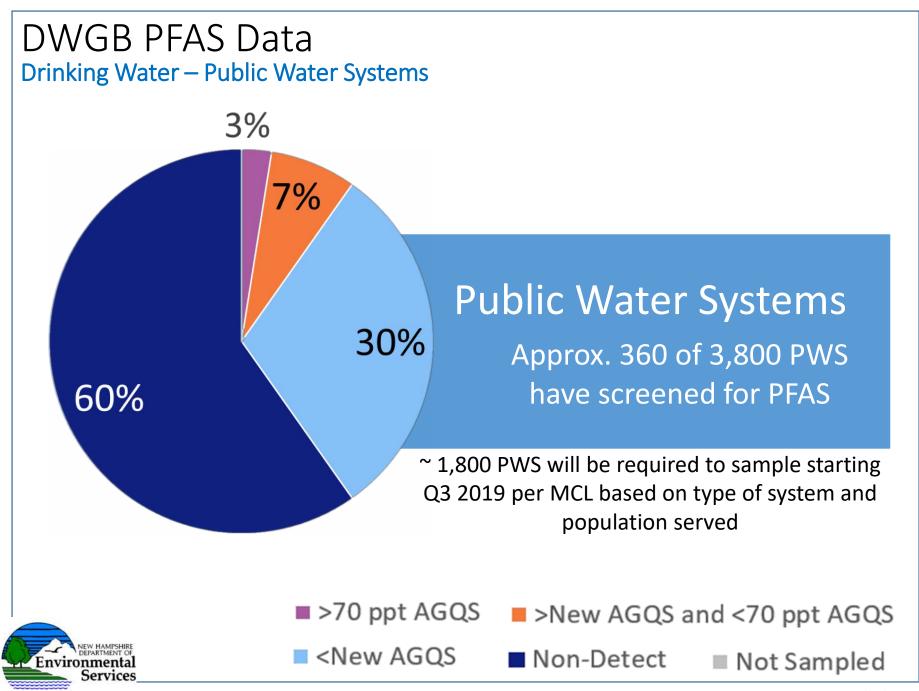

PFAS Impacts To Groundwater Quality Are Present Throughout New Hampshire

PFAS SAMPLES (Data in NHDES' Environmental Monitoring

- > Existing AGQS Database [EMD] ~6,500 groundwater samples)
- > New AGQS
- < New AGQS

PFAS SITES (Data in NHDES' Onestop Database ~415 sites)

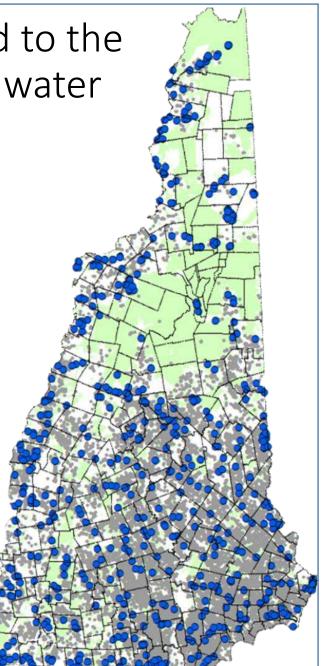
- Site with PFAS Detections
 New AGQS
- ★ Site with PFAS Detections < New AGQS</p>
- Site with PFAS Screening No Detections



IV. Water Supply Data

Public Water Systems & Private Well Water Supplies in NH

HWRB/DWGB PFAS Data Drinking Water – Private Water Supplies

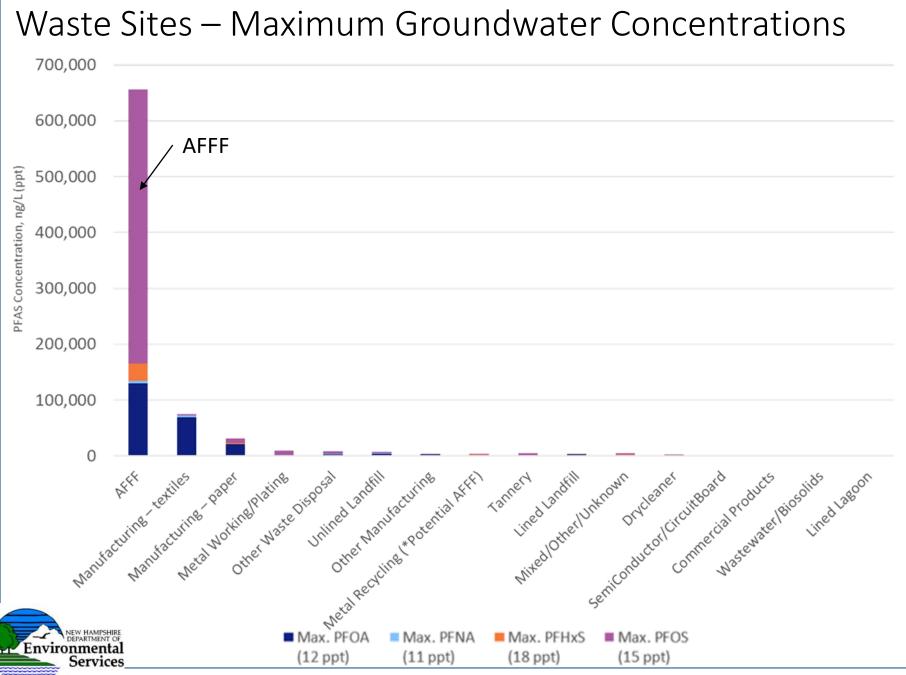

> ~250,000 private wells | ~46% of the state's population Not a lot of private well data outside of So. NH

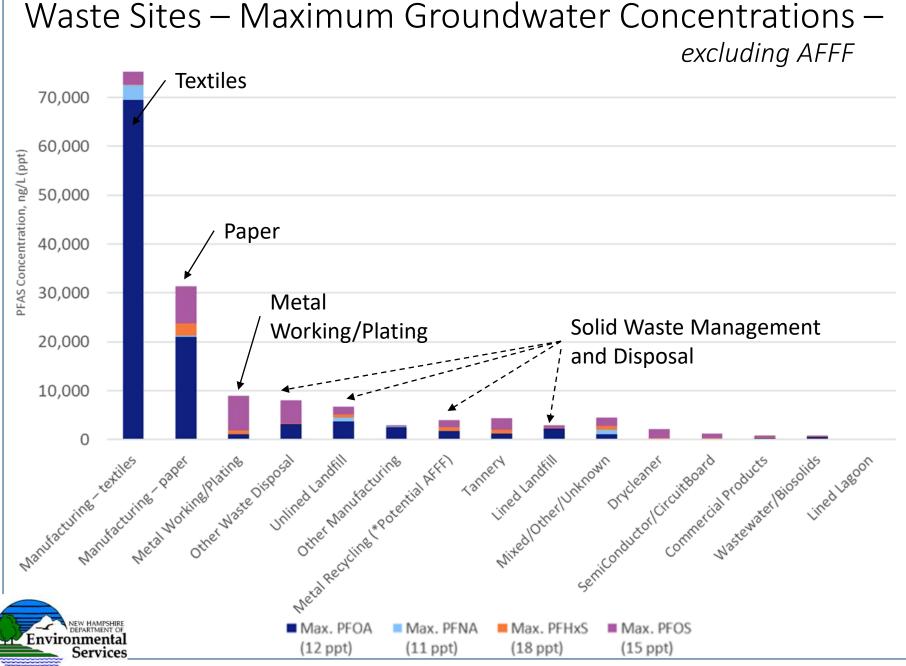
- Limited private well sampling based on proximity to:
 - Sensitive receptors of concern (i.e. childcare facilities, schools, etc.)
 - Industrial sites with known intensive PFAS use
 - Fire / fire department / fire training areas
 - Active waste sites / waste disposal facilities
 - 🗗 Airports
 - 🗗 Air Permit Sites
 - Agricultural sites / nurseries / growers

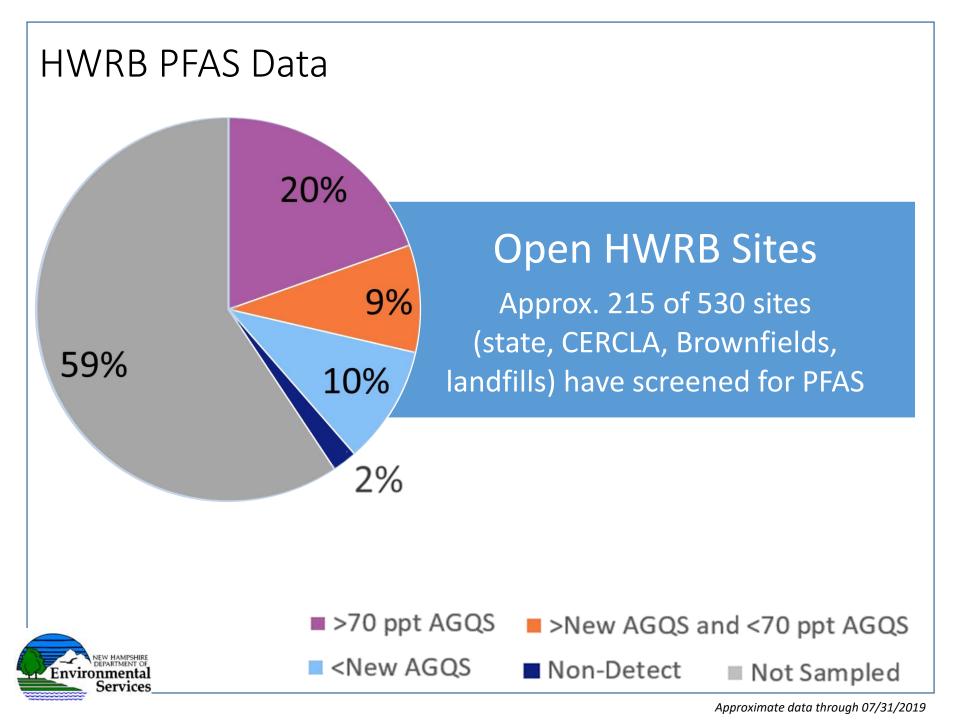
Ongoing NHDES Initiatives Related to the Occurrence of PFAS in NH Groundwater

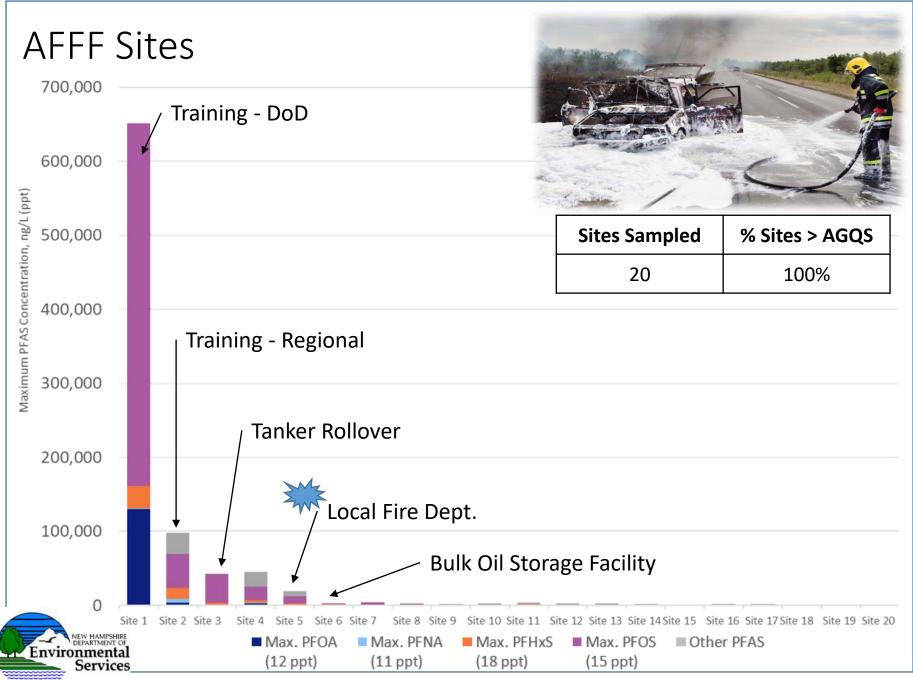
- Soil background and leaching
- DWGWTF background sampling
 - ~ 500 random wells
 - ~100 co-located biomonitoring samples
- Fire service water supply sampling
- Surface water sampling
- Control of air emissions
 - Domestic Well Candidates
 - Randomly Selected Well

Ongoing Initiatives continued

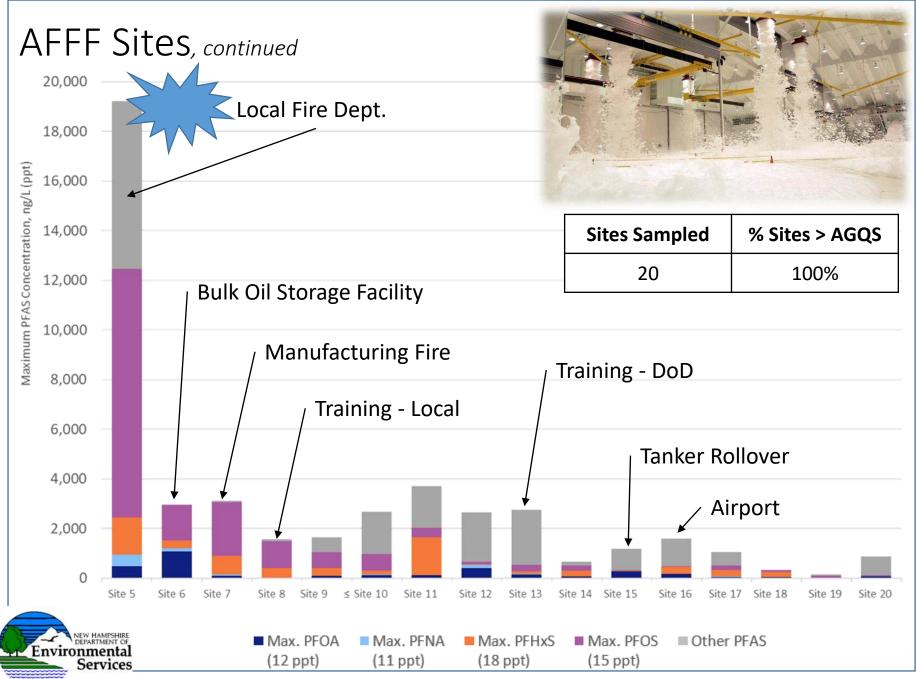

- Landfill leachate
 - 18 samples from lined facilities in 2018
- Wastewater Influent and Effluent
 - Sampled 13 WWTPs delegated to implement federal pretreatment standards, of the more than 60 WWTPs in NH in 2017
- Residuals Sludge and Biosolids
 - 33 samples from 24 of 24 certificate holders (permittees) in 2017-2018
 - Sampling underway for all permittees in 2019, requirement in 2020 onward
 - Some application sites under assessment



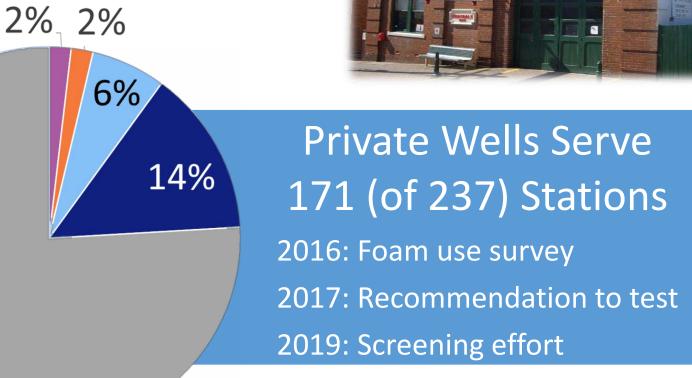

Waste Site Sources	Sites Sampled	% Sites > AGQS	Max. PFOA (12 ppt)	Max. PFNA (11 ppt)	Max. PFHxS (18 ppt)	Max. PFOS (15 ppt)
Class B Foam / AFFF	20	100%	130,000	4,500	31,000	490,000
Manufacturing – textiles	3	100%	69,500	2,960	200	2,560
Manufacturing – paper	6	75%	21,000	320	2,400	7,600
Metal Working/Plating	22	65%	1,070	22	806	7,080
Other Waste Disposal	15	67%	3,200	31	89	4,750
Unlined Landfill	161	74%	3,700	774	663	1,600
Other Manufacturing	14	36%	2,510	110	75	162
Metal Recycling*	14	80%	1,700	100	674	1,440
Tannery	3	100%	1,230	4	769	2,410
Lined Landfill	13	69%	2,200	30	107	632
Mixed/Other/Unknown	93	58%	1,090	960	745	1,700
Drycleaner	21	75%	160	29	88	1,800
Semiconductor/Circuit Board	9	67%	170	13	150	850
Commercial Products	4	100%	242	102	69	405
Wastewater/Biosolids	6	83%	560	13	81	204
Lined Lagoon	12	8%	18	0	14	7



Approximate data through 07/31/2019



Approximate data through 07/31/2019



Approximate data through 07/31/2019

Approximate data through 07/31/2019

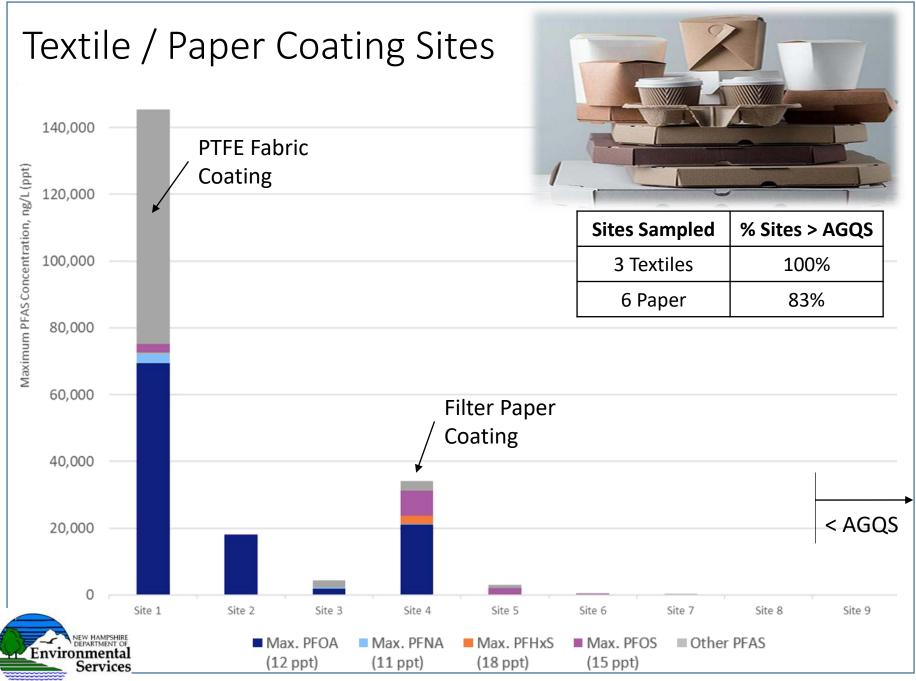
Fire Station Water Supply Well Sampling Initiative

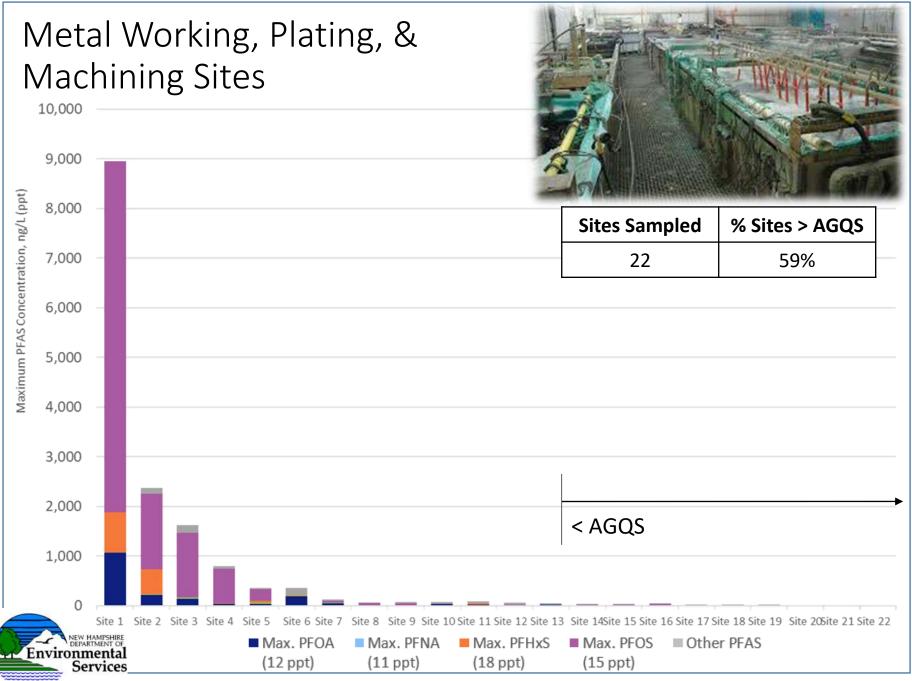
> 65 Stations Have Screened for PFAS

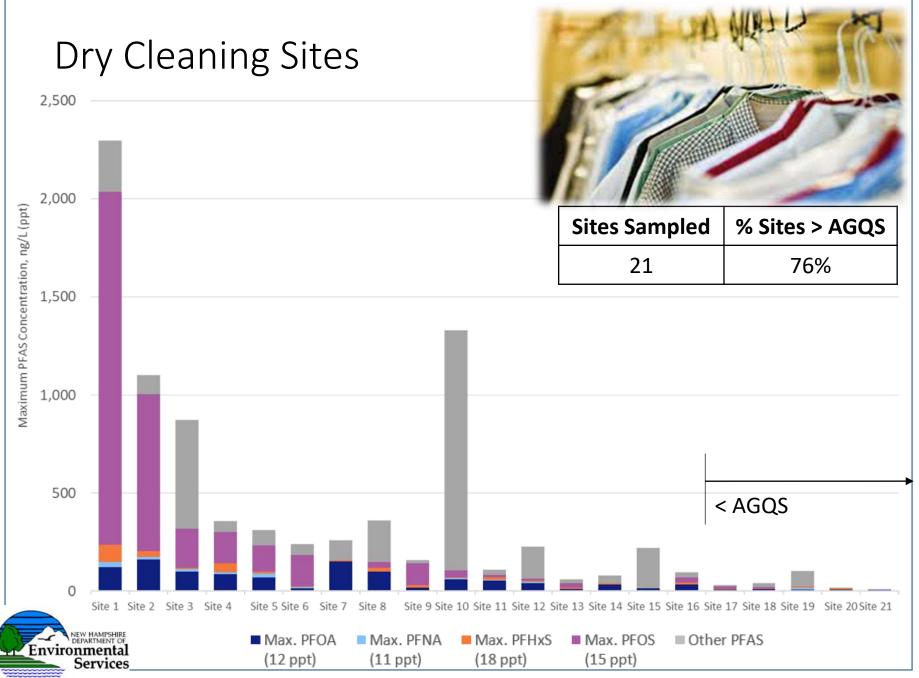
Non-Detect

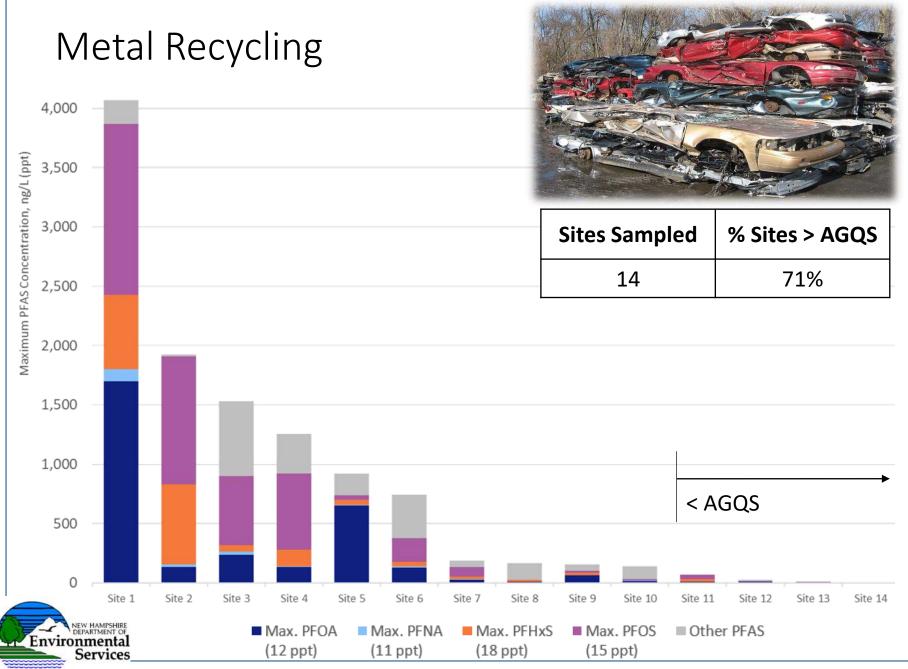
FIRE & STATION

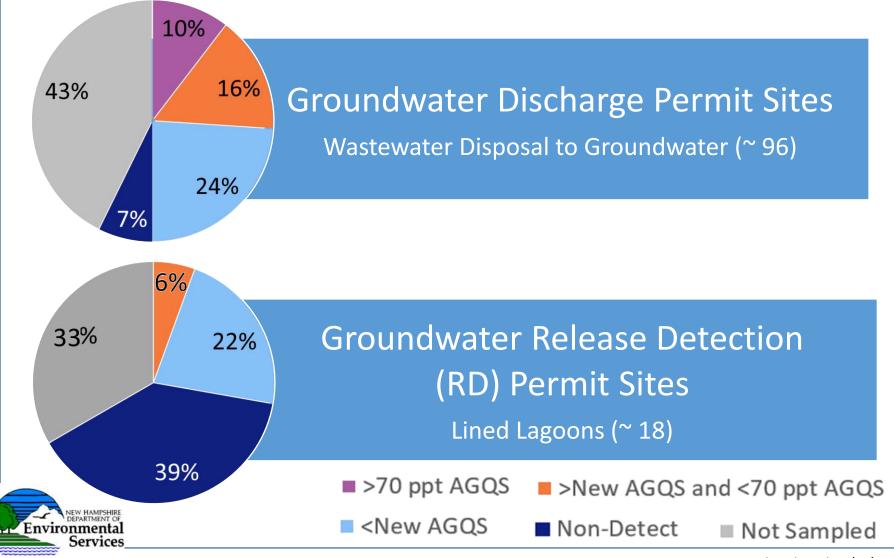
<New AGQS</p>

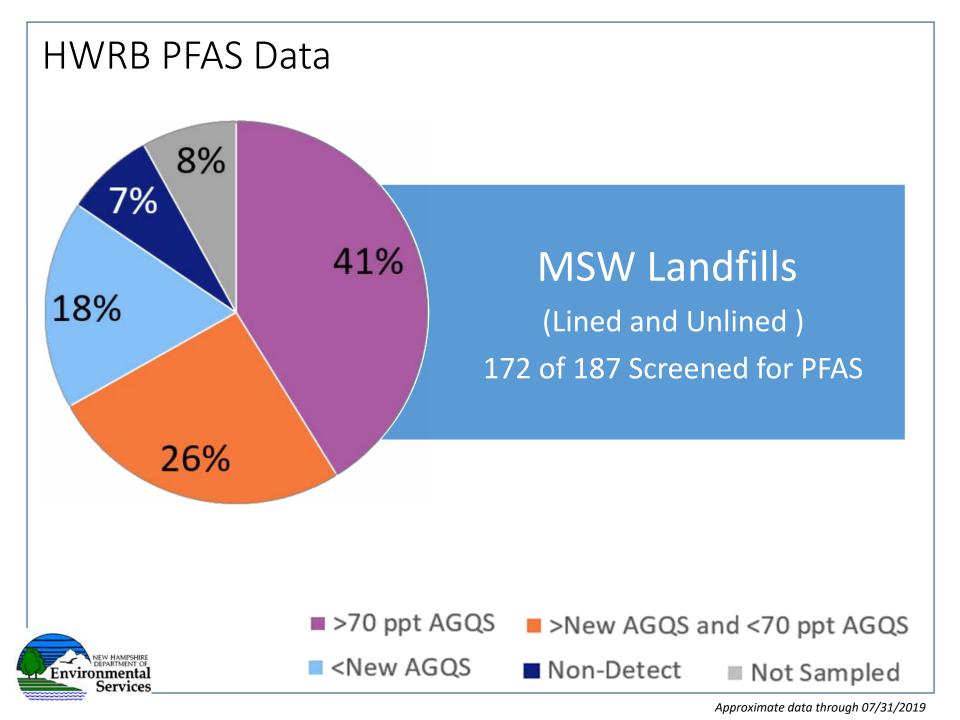

>New AGQS and <70 ppt AGQS</p>

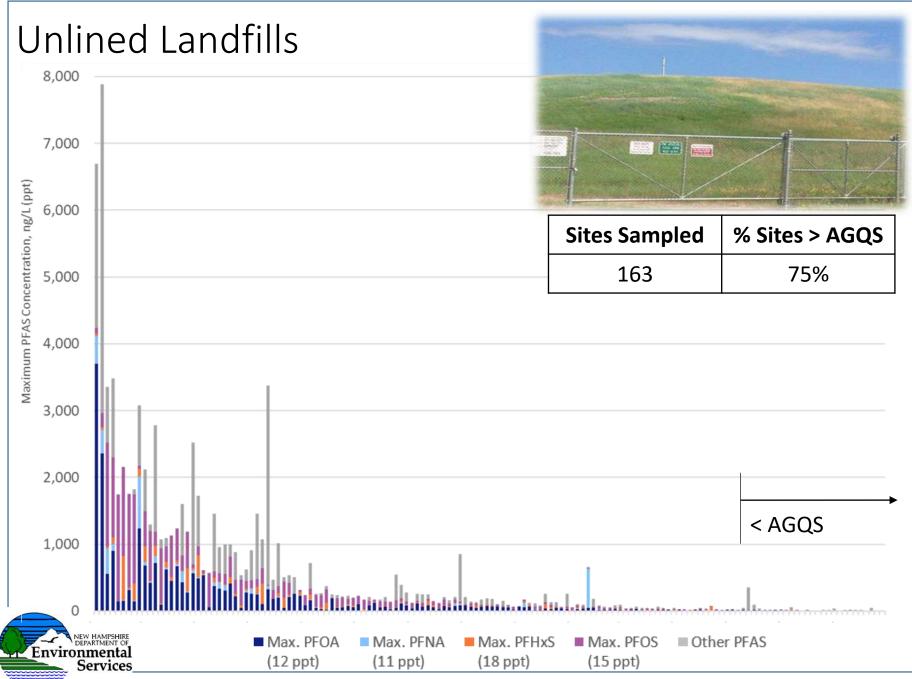

Approximate data through 07/31/2019


Not Sampled


76%


Approximate data through 07/31/2019


HWRB/DWGB PFAS Data


Maximum Wastewater-Related Impacts in Groundwater Monitoring Wells

(Not compliance boundary violations)

Approximate data through 07/31/2019

Approximate data through 07/31/2019

VI. PFAS Background References

NHDES Website

https://www4.des.state.nh.us/ nh-pfas-investigation/

Welcome Posted on September 1, 2017 by Jana Ford

Welcome. This website will be used to update interested parties on NHDES' current investigation into the presence of Per- and Polyfluoroality/ dustances (PFAS) in New Hampshire. You can access our previous webpage for archived information: https://www.des.ntig.vo/roganization/commissioner/Ploahtm.

Posted in Uncategorized

NHDES Extends Bottled Water Delivery Area Posted on September 13, 2017 by Jim Martin

NHDES has extended bottled water delivery area to additional properties in Merrimack and Litchfield. The complete list of eligible properties can be found on the Bottled Water Delivery Area page.

https://wwwidesstate.nbusing.pfas.ipyst5jaation/_bhileid, Merrimack, St. Gobain

Water Line Extension Projects Investigation Documents Be Well Informed Guide Pease Tradeport Investigation Archive

EMAIL ALERTS

CONTACT INFORMATION Jim Martin (603) 271-3710 NHDES Public Information Office

RECENT POSTS

NHDES Extends Bottled Water

ITRC

• Fact Sheets

https://pfas-1.itrcweb.org/

- Technical Guidance Document (2020)
- Education and training

Contact Information

Amy T. Doherty, P.G.

State Sites Section Supervisor Hazardous Waste Remediation Bureau 29 Hazen Drive, PO Box 95 Concord, NH 03302-0095 Phone: (603) 271-6542 Fax: (603) 271-2456 email: <u>amy.doherty@des.nh.gov</u>

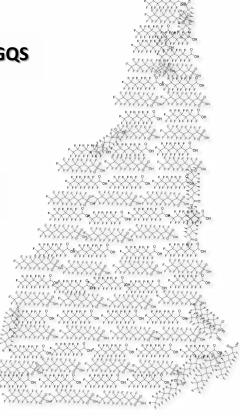
Kate Emma A. Schlosser, P.E.

Emerging Contaminants Supervisor Hazardous Waste Remediation Bureau 29 Hazen Drive, PO Box 95 Concord, NH 03302-0095 Phone: (603) 271-2910 Fax: (603) 271-2456 email: KateEmma.Schlosser@des.nh.gov

Proposed (and Now Adopted) PFAS Maximum Contaminant Levels & Ambient Groundwater Quality Standards:

How did NH get here, and where are other States?

Jonathan M. Ali, Ph.D. 2019 New Hampshire Waste & Contaminated Sites Conference September 11th, 2019



Presentation Overview

- 1. Introductions & New Hampshire Context for MCLs/AGQS
- 2. NH's Health-Based Risk Assessment
 - Hazard Identification
 - Reference Dose (RfD) Derivation
 - Exposure Assumptions
 - Application of Minnesota's Breastfeeding Model
 - Resulting MCLs/AGQS
- 3. Where are other agencies?
- 4. Questions

Permitting & Environmental Health Bureau Team

Mary Butow Health Risk Assessor

David Gordon Health Risk Assessor

(currently doesn't have a picture available in the staff directory)

New Hampshire Context for MCLs/AGQS

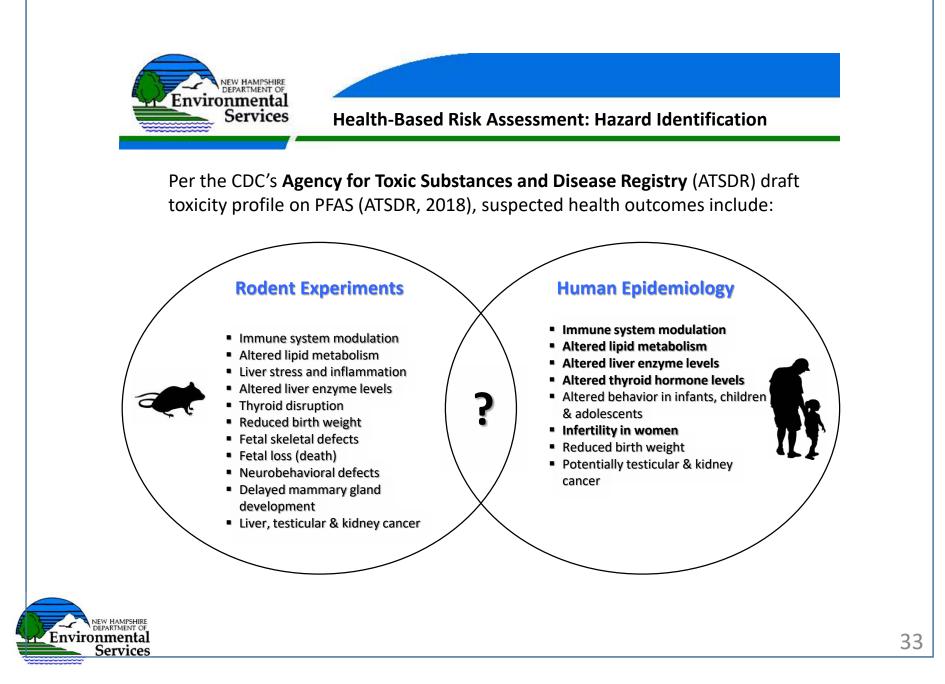
Response to previous identification of impacted sites, specifically drinking water, in **Southern NH** and the **Seacoast**.

SB309 Passed in the Summer of 2018.

Facilitated the establishment of Drinking Water Maximum Contaminant Levels (MCLs/AGQS) for four PFAS:

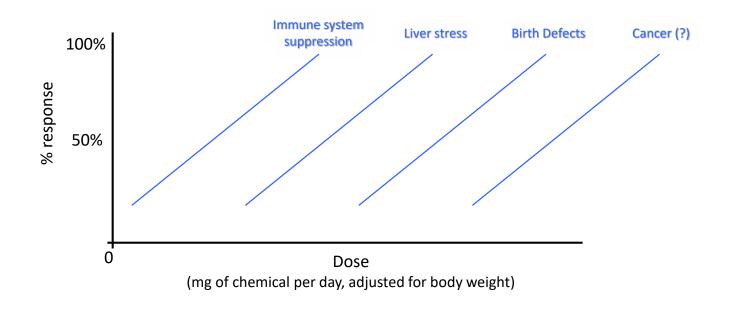
- Perfluorooctanoic acid (PFOA)
- Perfluorononanoic acid (PFNA)


nvironmental

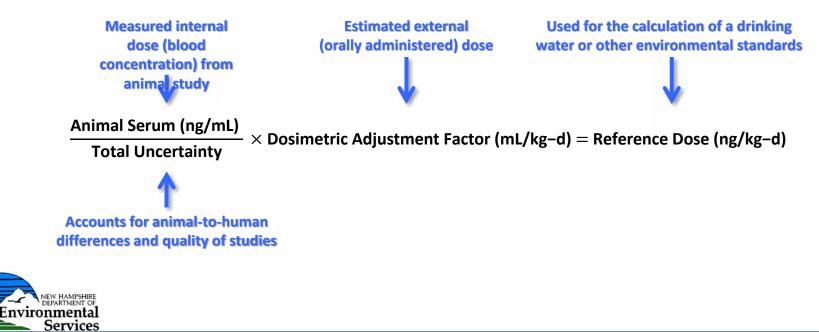

Services

- Perfluorooctane sulfonic acid (PFOS)
- Perfluorohexane sulfonic acid (PFHxS)

Initial proposal of MCLs/AGQS due January 1st, 2019.


SB309 also granted NHDES additional staff including: a Human Health Risk Assessor and a Toxicologist

A Conceptual Example of NHDES Approach to Hazard Identification & Dose Considerations



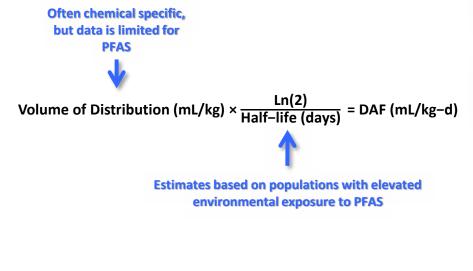
Health-Based Risk Assessment: RfD Derivation

A Reference Dose (RfD) is:

"An estimate (with uncertainty spanning perhaps an order of magnitude) of a daily oral exposure to the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime." – EPA 2002

RfDs are not synonymous to ATSDR minimal risk levels (MRLs).

Health-Based Risk Assessment: RfD Derivation


	(Ali et al., under review)		Half-life Differences of PFHxS		
	Reference	Sample Population	Sample Size & Sex	Half-Life Estir	mates for PFHxS
Animal toxicokinetics ≠ Human toxicokinetics	Human Studies Li et al. 2018	Sweden	n = 30, 😨 n = 20, 🗗		<mark>5% (1 3.9-5.9)</mark> 5% (1 6.0-9.7)
Significant half-life differences result is	Worley et al. 2017	USA	n = 30, ĝ/đ	15.5 years (estimate	e range 13.4-17.6)
disparate internal (serum) dosimetry of PFAS.	Zhang et al. 2013	China	n = 66, ♀/♂ n = 30, ♀	35.0 years* 7.7 years**	
Requires use of internal (serum) doses	Spliethoff et al. 2009	USA	n = 240 @/&	8.2 years (9	95% CI 5.4-16.2)
Internal Dose (ng/mL) × Dosimetric Adjustment Factor = External Dose (mg/kg-d)	Olsen et al. 2007	USA	n = 24, 😲 n = 2, 🗗	8.5 years (9	95% CI 6.4-10.6)
	Animal Studies Sundström et al. 2012	Species Cynomolgus Monkey	n = 3, 😲 n = 3, 🗗	87 days 141 days	(SE ± 27) (SE ± 30)
EPA Science Advisory Board (SAB) and other	Kim et al. 2016	Sprague- Dawley Rat	n = 5, 😲 n = 5, 🚰	0.9-1.7 days 20.7-26.9 days	(averages) (averages)
U.S. agencies acknowledge this issue.	Sundström et al. 2012	Sprague- Dawley Rat	n = 4, 😧 n = 4, ਓ	1.6 days 28.7 days	(SE ± 0.1) (SE ± 0.6)
EPA. 2006. SAB review of EPA's draft risk assessment of potential human health effects associated with PFOA and its salts. U.S. Environmental Protection Agency. http://yosemite.epa.gov/sab/sabproduct.nsf/A3C83648E77252828525717F004B9099/SFile/sab_06_006.pdf.	Benskin et al. 2009	Sprague- Dawley Rat	n = 4, 🗗	15.9 days	
	Sundström et al. 2012	CD-1 Mice	n = 4, 🚱 n = 4, 🚰	24.9-26.8 days 28.0-30.5 days	

External (oral) doses from animal studies are not acceptable for long-chain PFAS risk assessment.

The **dosimetric adjustment factor (DAF)** utilized current methodology to account for the remarkably long physiological half-lives of PFAS.

Other dosimetric considerations included: Use of ¾ Body Weight Adjustment

• Failed to account for half-lives

Uncertainty related to other human half-life estimates base don epidemiology

- (e.g., Convertino et al. 2018)
 - Failed to account for saturation of renal transporters likely responsible for PFAS reabsorption
 - Serum levels in late-stage cancer patients were 90,000-120,000 x higher than background levels

U

Health-Based Risk Assessment: RfD Derivation

	Table 2. Interagency Differences in Uncertainty Factors. Summary of uncertainty factor allocations, RfDs and MRLs by government risk assessment groups.								
	Specific Uncertainty Factors	ATSDR* (MRLs)	US EPA ^{b,c} (RfD)	TX CEQ ⁴ (RfD)	MN DOH** (RfD)	NJ DWQI ^{k-j} (RfD)	NH DES (RfD)	NY DOH ^k (RfD)	
	PFOA								
Jncertainty Factors (UFs) were applied	Principal Study	Koskela et al. 2016	Lau et al. 2006	Macon et al. 2011	Lau et al. 2006	Loveless et al. 2006	Loveless et al. 2006	Macon et al. 2011	
	Human Variability	10	10	10	10	10	10	10	

Table 2. Interagency Differences in Uncertainty Factors. Summary of uncertainty factor allocations, RfDs and MRLs by government risk assessment groups.

Specific Uncertainty Factors	ATSDR* (MRLs)	US EPAb,c (RfD)	TX CEQ ^d (RfD)	MN DOH** (RfD)	NJ DWQI ^{h-j} (RfD)	NH DES (RfD)	NY DOH ^k (RfD)
PFOA							
Principal Study	Koskela et al. 2016	Lau et al. 2006	Macon et al. 2011	Lau et al. 2006	Loveless et al. 2006	Loveless et al. 2006	Macon et al 2011
Human Variability	10	10	10	10	10	10	10
Interspecies Differences	3	3	1	3	3	3	3
Duration of Exposure	1	1	1	1	1	1	1
LOAEL to NOAEL	10	10	30	1	1	1	1
Database Insufficiency	1	1	1	3	10	3	3
Total Uncertainty Factor	300	300	300	100	300	100	100
RfD (ng/kg-d)	3.0	20.0	12.0	18.0	2.0	6.1	1.5

LOAEL to NOAEL	1	 3
Database Insufficiency	10	10
Total Uncertainty Factor	300	 300
RfD (ng/kg-d)	20.0	3.8

n.a. indicates the specific compound was not assessed or reported on by the specific agency.

*ATSDR, 2018b. Draft Toxicological Profile for Perfluoroalkyls

^b U.S. EPA, 2016a. Health Effects Support Document for Perfluorooctanic Acid (PFOA)

^c U.S. EPA, 2016b. Health Effects Support Document for Perfluorooctane Sulfonate (PFOS)

^d TX Commission on Environmental Quality (TXCEQ), 2016. Perfluoro Compounds (PFCs): available at: https://www.tceg.texas.gov/assets/public/implementation/tox/evaluations/pfcs.pdf

10

300

97

3

300

4.0

* Minnesota Department of Health (MDH), 2018. Toxicological Summary for: Perfluorooctanoate. f Minnesota Department of Health (MDH), 2019a. Toxicological Summary for: Perfluorooctane sulfonate. # Minnesota Department of Health (MDH), 2019b. Toxicological Summary for: Perfluoroheane sulfonate.

Health-Based Risk Assessment: RfD Derivation

Perfluorooctanoic acid (PFOA) RfD Derivation

Animal Starting Point (Internal Dose and Effect)

Animal Serum Level (Benchmark Model, NJDWQI calculation)

Increased relative liver weight, or the onset of hepatotoxicity 4,351 ng/mL

4,351 ng/mL

43.5 ng/mL

100

Uncertainty Factors

Human-to-Human Variation	10				
Rodent versus Human Sensitivity	10 ^{0.5}				
(assumes humans are more sensitive than mice)					
Database Uncertainty					
(suspected growth & immune effects) ×	×10 ^{0.5}				
Total Uncertainty Factor	100				

Estimation of Human External Dose

Dosimetric Adjustment Factor (DAF)

Converts the internal blood dose (above) to an external (oral) dose of the chemical.

DAF = Vd ×
$$\left(\frac{Ln2}{Halflife (days)}\right)$$

DAF = 0.17 L/kg × $\left(\frac{Ln2}{2 + 10^{-4}}\right)$ = 1.40x10⁻⁴ L/H

AF = 0.17 L/kg ×
$$\left(\frac{L12}{840 \text{ days}}\right)$$
 = 1.40x10⁻⁴ L/kg-d

Assumed a 2.3 year half-life

43.5 ng/mL 1.40x10⁻⁴ L/kg-d × 1,000 mL/L 6.1 ng/kg-d

PFOA RfD, 6.1 ng/kg-d

Health-Based Risk Assessment: RfD Derivation

RfDs for the four evaluated PFAS in comparison to values from other agencies. All values below are presented in **ng/kg-d**

Specific PFAS	NHDES (RfD)	NJDWQI (RfD)	US EPA 2016 (RfD)	ATSDR 2018 (draft MRL)	EFSA 2019 (draft RfD)
PFOA	6.1	2.0	20.0	3.0	0.8
PFOS	3.0	1.8	20.0	2.0	1.8
PFHxS	4.0	-	-	20	-
PFNA	4.3	0.73	-	3.0	-

USEPA. 2016. Drinking Water Advisory for Perfluoroctanoic acid (PFOA).

USEPA. 2016. Drinking Water Advisory for Perfluorooctane sulfonic acid (PFOS).

ASTDR. 2018. Toxicological Profile for Perfluoroalkyls Draft for Public Comment. <u>https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=1117&tid=237</u> EFSA. 2018. <u>http://www.efsa.europa.eu/en/press/news/181213</u>

Health-Based Risk Assessment: Exposure Assumptions

Exposure characterization considers how much PFAS is permissible given:

- 1. Protective assumptions about water ingestion rates
- 2. Estimation of other non-drinking water sources of exposure (relative source contribution).

The U.S. EPA (2016) assumed:

- water ingestion rate of the 90th percentile of lactating women, and
- that 20% of exposure is through drinking water
- Lifetime Health Advisory for PFOA & PFOS at 70 ng/L

These assumptions vary by state agencies, sometimes resulting in different drinking water values.

image: medium.com

 $\frac{\text{RfD (ng/kg-day)} \times \text{Relative Source Contribution (\%)}}{\text{Maximum Contaminant Level (ng/L)}} = \text{Maximum Contaminant Level (ng/L)}$

Water Ingestion Rate (L/kg-day)

Specific PFAS	Reference Dose (ng/kg-day)	Water Ingestion Rate (L/kg-day)	Relative Source Contribution	Proposed MCL (ng/L)
PFOA		These values		38
PFOS	These values changed in	changed in the EPA	These values changed in	70
PFHxS	response to technical comments	Exposure Factor Handbook	response to technical comments	85
PFNA		(Feb 2019)		23

Health-Based Risk Assessment: Exposure Assumptions

 $\frac{\text{RfD (ng/kg-day)} \times \text{Relative Source Contribution (\%)}}{\text{Water Ingestion Rate (L/kg-day)}} = \text{Maximum Contaminant Level (ng/L)}$

Specific PFAS	Reference Dose (ng/kg-day)	Water Ingestion Rate (L/kg-day)	Relative Source Contribution	<u>Example</u> Drinking Water Value (ng/L)
PFOA	6.1	These values	50%	These volues
PFOS	3.0	do not account for the transfer of	50%	These values would result in
PFHxS	4.0	PFAS across the placenta and into	50%	unacceptable serum levels in breastfed
PFNA	4.3	breastmilk.	50%	infants.

What is the Transgenerational (or Minnesota) Model?

The conceptual diagram for the toxicokinetic model.

Image from: Goeden et al. (2019), Journal of Exposure Science & Environmental Epidemiology vol. 29, 183–195.

Excel-based model is available upon request from Minnesota Department of Health.

Human Half-life Assumptions

- NHDES applied average (central tendency) half-life estimates for PFOA (2.3 years), PFOS (3.4 years), PFNA (4.3 years) and PFHxS (4.7 years).
- NHDES did not apply the 95th percentile, or other high-end values derived from occupational exposures.

Placental & breastmilk transfer efficiencies

• NHDES applied average (central tendency) transfer efficiencies, similar to MDH and MIDHHS.

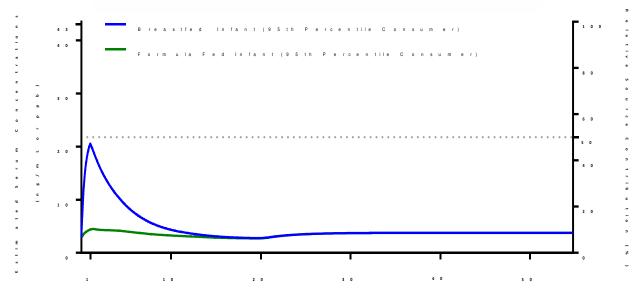
Duration of exclusive breastfeeding

 NHDES applied a 12-month exclusive breastfeeding duration (conservative) for the modeled exposure scenarios.

Breastmilk & water ingestion rates

 NHDES applied the 95th percentile (conservative) ingestion rates for water and breastmilk across life.

Values are summarized in Table 3 of the June Report.

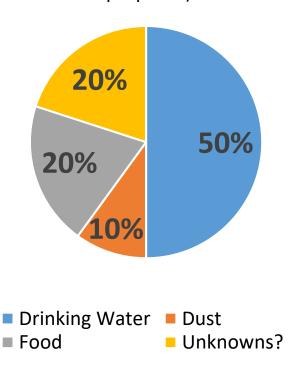


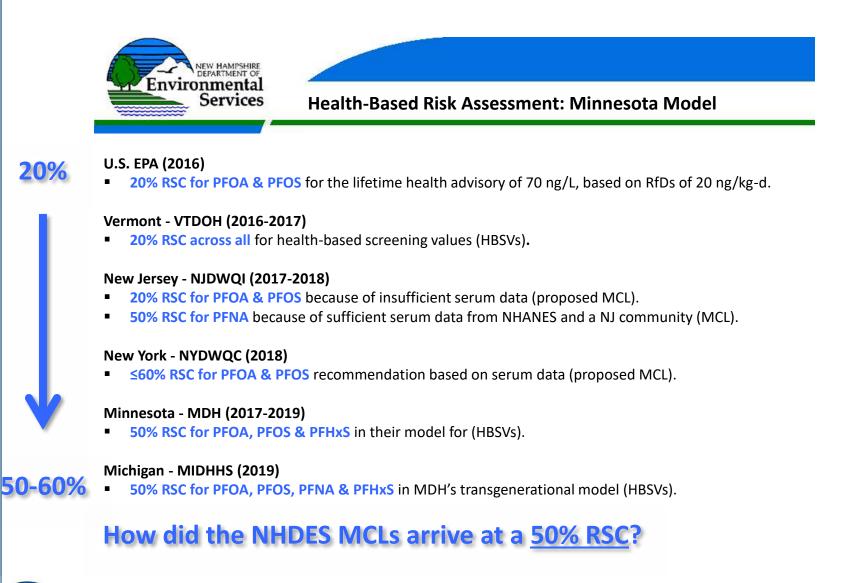
The model allows for the comparison of:

- predicted blood levels (left y-axis) to
- the % of allowable maximum dose (right y-axis).

Predicted Serum Concentrations of PFOA, MCL of 12 ng/L

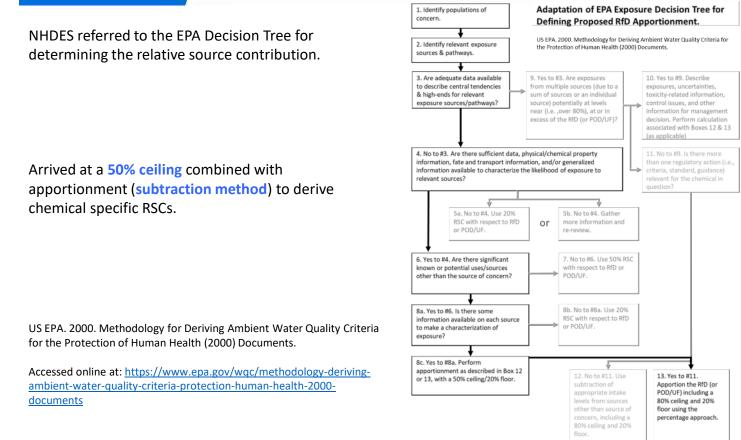
Age (Years)




This is **how we "budget" the daily dose (RfD)** for water versus non-drinking water sources of exposure.

- 20% Low and the default EPA recommendation when "we don't know". Results in the most restrictive MCL.
- 50% Consistent with values derived from NHANES to estimate background & EPA guidance
- 80% -Results in a higher MCL value and assumes that other sources are not contributing to exposure (20% or less).

Relative Source Contribution (example below for visualization purposes)



In the initial proposal, NHDES estimated "background" using existing blood data. However, this value should reflect the typical non-drinking water exposures.

Used the EPA subtraction method:	Target serum level (ng/mL) – Population background (ng/mL) = RSC				
	Target serum level (ng/mL)				

Using the NHANES (average) for PFOA:

 $\frac{43.5 \text{ ng/L} - 1.8 \text{ ng/L}}{43.5 \text{ ng/L}} = 0.96 \text{ or } 96\%$

Using Adults from Southern NH (95th percentile) for PFOA:

 $\frac{43.5 \text{ ng/L} - 26.6 \text{ ng/L}}{43.5 \text{ ng/L}} = 0.39 \text{ or } 39\%$

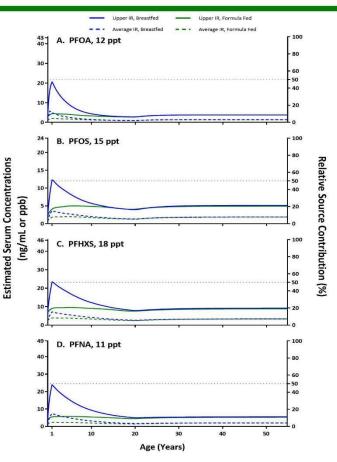
The use of the <u>NH-specific data likely overestimates</u> the background (non-drinking water) exposure.

But, the current lack of regulations on PFAS means an 80% RSC, especially for adults, is inadequately protective.

US EPA. 2000. Methodology for Deriving Ambient Water Quality Criteria for the Protection of Human Health (2000) Documents. Accessed online at: <u>https://www.epa.gov/wgc/methodology-deriving-ambient-water-quality-criteria-protection-human-health-2000-documents</u>

Estimation of RSC Using	Reference Population	Reference Serum Level (ng/mL)	Target Serum Level (ng/mL)	Resulting RSC Allotment for Drinking Water (%)
NHANES Data & EPA Method	PFOA 3-5 year olds (GM)	2.00	43.5	95.4
	6-11 year olds (GM)	1.89	43.5	95.7
	12-19 year olds (GM)	1.66	43.5	96.2
	3-5 year olds (95 th percentile)	5.58	43.5	87.2
RSC estimates using the NHANES	6-11 year olds (95 th percentile)	3.84	43.5	91.2
2013-2014 dataset (summarized	12-19 year olds (95 th percentile)	3.47	43.5	92.0
by Daly et al. 2018):	PFOS 3-5 year olds (GM)	3.38	24.0	85.9
 geometric mean (GM) and 	6-11 year olds (GM)	4.15	24.0	82.7
• 95 th percentile.	12-19 year olds (GM)	3.54	24.0	85.3
	3-5 year olds (95 th percentile)	8.82	24.0	63.3
	6-11 year olds (95 th percentile)	12.40	24.0	48.3
	12-19 year olds (95 th percentile)	9.30	24.0	61.3
NHANES data more likely to				
•	PFNA 3-5 year olds (GM)	0.76	49.0	98.4
reflect background exposure	6-11 year olds (GM)	0.81	49.0	98.3
levels from non-drinking water	12-19 year olds (GM)	0.60	49.0	98.8
sources.	3-5 year olds (95 th percentile)	3.49	49.0	92.9
3001003.	6-11 year olds (95 th percentile)	3.19	49.0	93.5
	12-19 year olds (95 th percentile)	2.00	49.0	95.9
	PFHxS 3-5 year olds (GM)	0.72	46.3	98.4
Other sources remain a	6-11 year olds (GM)	0.91	46.3	98.0
significant concern, so a 50% cap	12-19 year olds (GM)	1.27	46.3	97.3
	3-5 year olds (95 th percentile)	1.62	46.3	96.5
was applied.	6-11 year olds (95 th percentile)	4.14	46.3	91.1
	12-19 year olds (95 th percentile)	6.30	46.3	86.4

Health-Based Risk Assessment: Resulting MCLs/AGQS


Given these **reference doses** and **exposure assumptions**, the proposed MCLs/AGQS are:

PFOA	12 ng/L
PFOS	15 ng/L
PFHxS	18 ng/L
PFNA	11 ng/L

Because of the unique properties of PFAS, accounting for breastmilk transfer is necessary.

The 50% RSC (upper limit) protects children from additional exposures to from other nondrinking water (or breastmilk) sources of PFAS.

Thus, these proposed MCLs are protective across all life stages for associated chronic health outcomes.

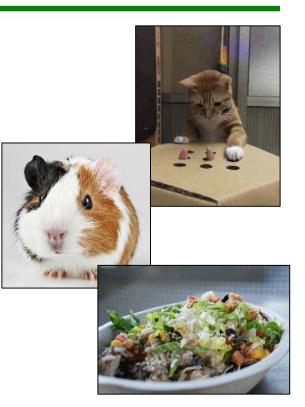
Where are other agencies? – Feds & Other States

Specific PFAS	NH DES (MCLs)	NJ DWQI (MCLs)	NY DOH (MCLs)	MN DOH (HBGV)	MI DHHS (SL)	CA OEHHA (DWLC)	US EPA (LHA)	VT DEP (advisory)	CT DPH (advisory)	MA DEP [†] (proposed)
PFOA	12 ng/L	13 ng/L	10 ng/L [†]	38 ng/L	9 ng/L	0.1 ng/L	70 ng/L combined*	20 ng/L combined*	70 ng/L combined*	20 ng/L combined*
PFOS	15 ng/L	14 ng/L [†]	10 ng/L†	15 ng/L	8 ng/L	0.4 ng/L	*	*	*	*
PFHxS	18 ng/L	-	-	47 ng/L	84 ng/L	-	-	*	*	*
PFNA	11 ng/L	13 ng/L [†]	-	-	9 ng/L	-	-	*	*	*
PFHpA	-	-	-	-	-	-	-	*	*	*
PFDA	-	-	-	-	-	-	-	-	-	*

MCL= maximum contaminant Level † Proposed value(s) DWI

New HAMPSHIRE DEPARTMENT OF Environmental

Services


evel HBGV = health-based guidance value DWLC = Drinking Water Limit for Cancer SL = screening level LHA = lifetime health advisory

Where are other agencies? - Feds & Other States

Considerations Across States

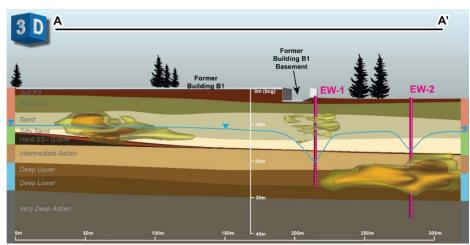
- 1. There is growing interest in class or sub-group regulation (tired playing whack-a-mole).
- 2. Emerging evidence of biological effects at lower doses. Are these relevant to human health?
- 3. Concern for contamination of other environmental media.
- 4. What role do food-related exposures play?
- 5. Are there more reliable PBPK models for environmentally-relevant exposures?

The New Hampshire Department of Environmental Services (NHDES) acknowledges the following groups for technical comments submitted by New Hampshire's:

- residents and community stakeholders,
- academic institutions,
- community advocacy groups,
- representatives for the business community,
- and municipalities.

Additionally, NHDES acknowledges the productive and professional discussions and information sharing by the following entities:

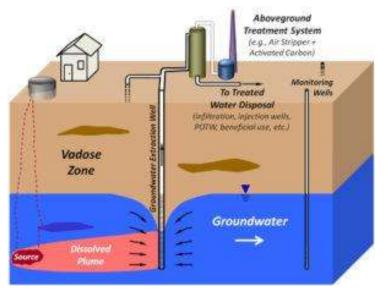
- Connecticut Department of Public Health (CTDPH)
- Environmental Council of the States (ECOS) PFAS Caucus
- Federal-State Toxicology & Risk Analysis Committee (FSTRAC)
- Interstate Technology & Regulatory Council (ITRC) PFAS Working Group
- Massachusetts Department of Environmental Protection (MADEP)
- Michigan Department of Health & Human Services (MIDHHS)
- Minnesota Department of Health (MDH)
- New England Interstate Water Pollution Control Commission (NEIWPCC)
- New Jersey Department of Environmental Protection (NJDEP)
- Northeast Waste Management Officials' Association (NEWMOA)

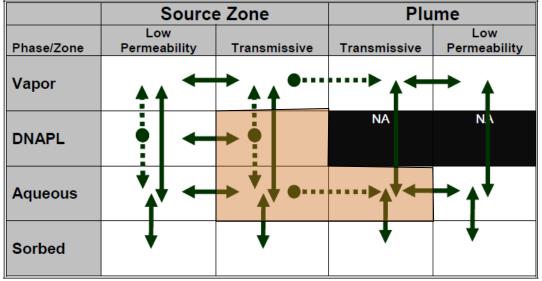


Questions? Contact the Environmental Health Bureau

Jonathan Ali, Ph.D. Toxicologist (603) 271-1359 Jonathan.ali@des.nh.gov Mary Butow, M.S. Human Health Risk Assessor (603) 271-8693 Mary.Butow@des.nh.gov David Gordon, M.S. Human Health Risk Assessor (603) 271-4608 David.Gordon@des.nh.gov

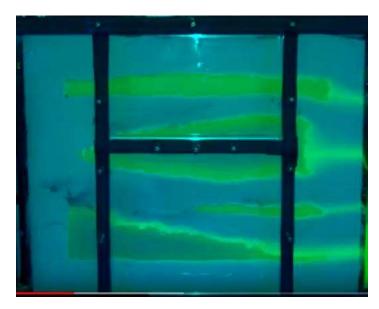
High Resolution Site Characterization and Data Visualization for Improved Remedial Alternatives Evaluation Bradley A. Green, P.G. Samuel L. Warner




Agenda

- Key paradigm shifts in our understanding of contaminated sites
- Summary of high resolution methods with examples
- Case study in the value of high resolution data collection coupled with 3D renderings

1st Generation / Conventional investigation and remediation (e.g., MWs / EWs) approaches focus on transmissive zones in the NAPL and aqueous phases (1970s – 1990s)



http://hazmatmag.com/2017/10/performance-assessment-ofpump-and-treat-systems/

Sale and Newell, 2009

2nd Generation characterization (high-resolution) methods have helped establish that contaminant mass occurs in multiple phases, in particular within low permeability zones (1990s to mid 2000s)

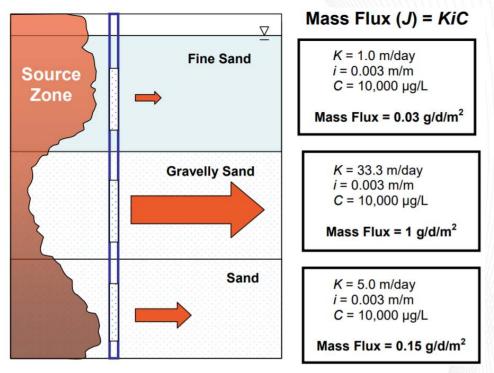
 Source Zone
 Plume

 Phase/Zone
 Low Permeability
 Transmissive
 Transmissive

 Vapor
 Image: Cone
 Image: Cone
 Image: Cone

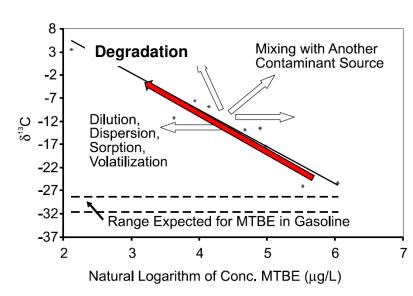
 DNAPL
 Image: Cone
 Image: Cone
 Image: Cone

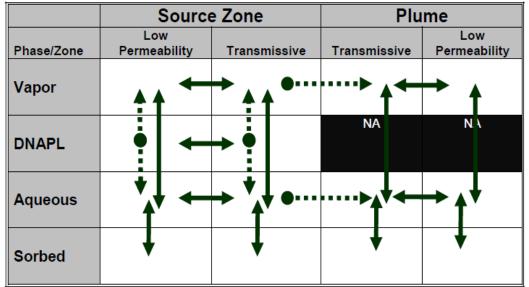
 Aqueous
 Image: Cone
 Image: Cone
 Image: Cone


 Sorbed
 Image: Cone
 Image: Cone
 Image: Cone

https://www.youtube.com/watch?v=iLwsIjkVybU

Sale and Newell, 2009


2nd generation tools typically focus on concentration and permeability and help us understand mass flux / discharge


- High resolution core sampling of soil or rock with in-field lab analysis
- In-situ screening of contaminant concentrations (e.g., MIP, LIF, Waterloo APS)
- Multiple level sampling systems (e.g., FLUTe, Solinst, Westbay)
- Refined hydraulic testing options (e.g., MiHPT, small scale slug testing, FLUTe, tracer testing)

ITRC, 2010

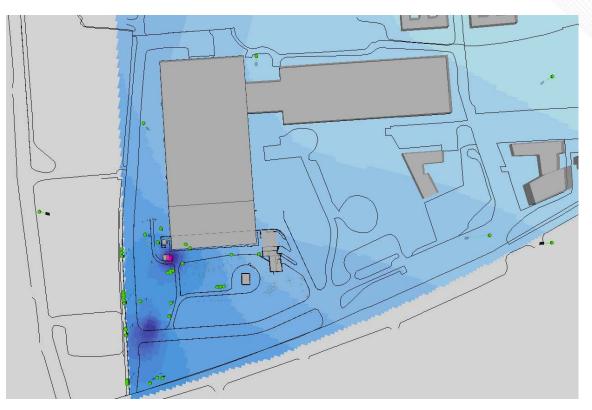
3G methods include techniques that focus on addressing the limitations of 1G and 2G methods, and help assess the <u>processes</u> that govern the transport and fate of contaminants (mid 2000s – present)

Sale and Newell, 2009

Examples of 3G Characterization Methods

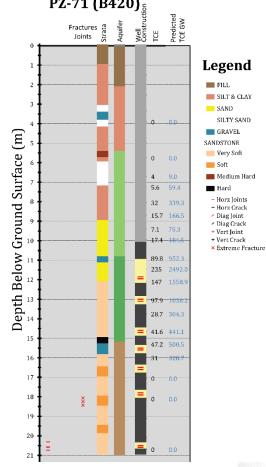
Evolution of 2G methods	Enhanced Analytical Tools	Improved collection methods	Proxy parameters
Rapid field analytical methods	Compound Specific Isotope Analysis	Cryogenic coring	Temperature
MIP with speciation / Optical Screening Tools (e.g., Dye LIF)	Microbial Ecology Assessment (DNA/RNA)	Multi-parameter passive sampling	Inert tracers (e.g., Fluorescein)
Refined geophysical methods	Element / molecule scale evaluation (SEM/TEM)	Passive flux meters	Methane / ORP

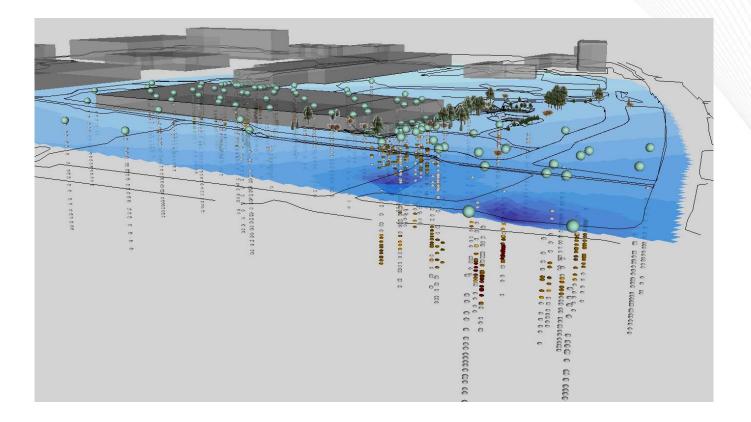
Case Study – TCE Contamination at Former Semi-Conductor Manufacturing Facility in Sud de France

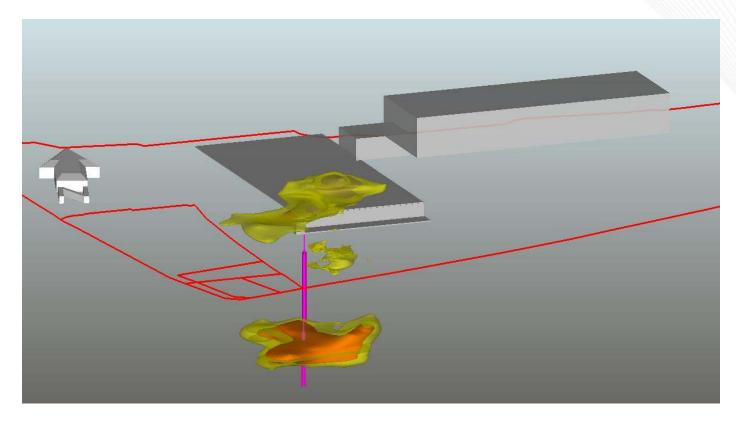

- Former semi-conductor manufacturing facility. Limited historical records of chlorinated solvent operations. Operations ceased in 2004.
- 1979 to 2005: Iterative groundwater investigations completed with long-screen monitoring wells (>10 meters). TCE identified in groundwater south of building B1.
- 2006 2010: Conventional multi-level monitoring well investigations completed in southern area. Single groundwater extraction well installed and operated to manage migration of TCE-impacted groundwater.

Aquifer Characteristics Building B2 Building Primary porosity flow **B**3 Former **Building B1** Former Building **B1** Basement Soil Fill Vadose Zone EW-2 Silt & Clay Sand Shallow Astien Dual porosity flow Silty Sand Hard Sandstone / Gravel Intermediate Astien Deep Upper Deep Astien Deep Lower 30 -Very Deep Astien

Secondary porosity flow

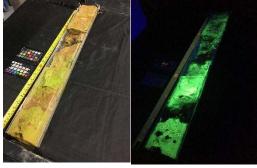

High resolution soil and groundwater sampling with mobile laboratory analysis





Real-Time 3D Visualization Example

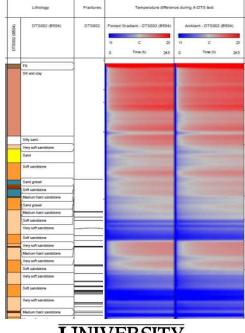
3D EVS Visualization Example



High resolution sampling for in-situ remediation feasibility evaluation

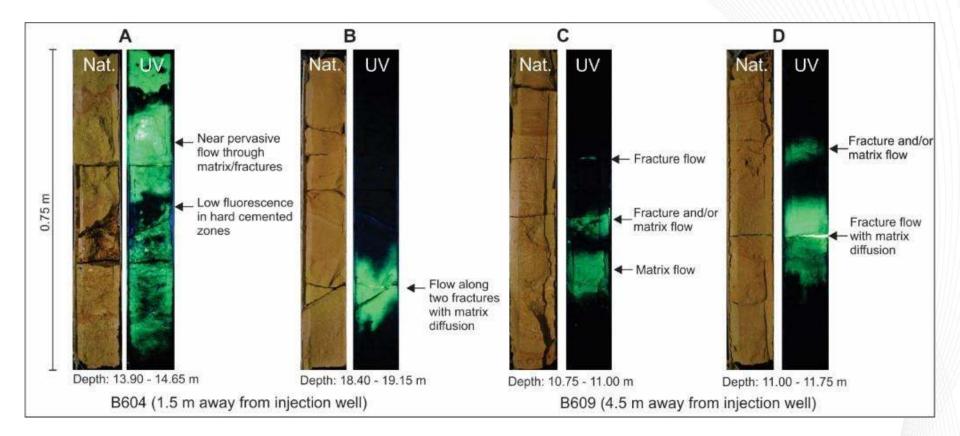
Fluorescein Inj. / Coring

Feasibility of in-situ treatment

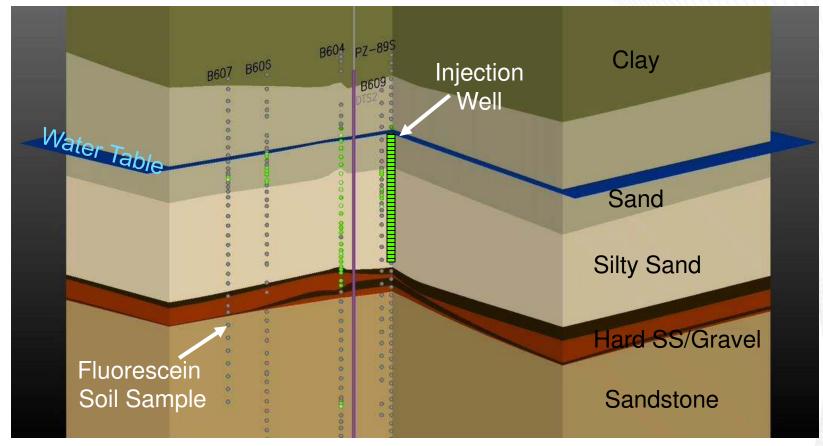


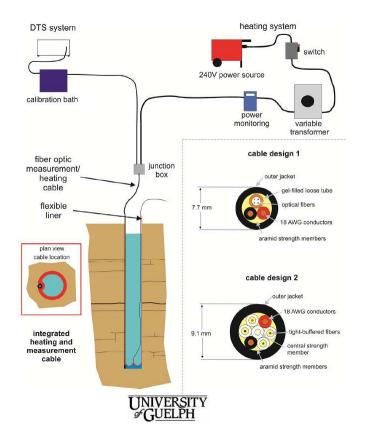
Active - Dist. Temp. Sensing

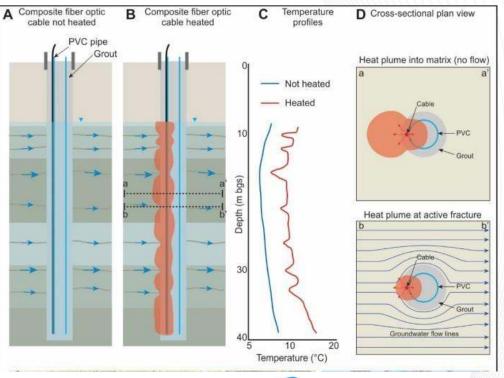
Eval. of preferential GW flow



Post-Injection Coring and Fluorescein Sampling

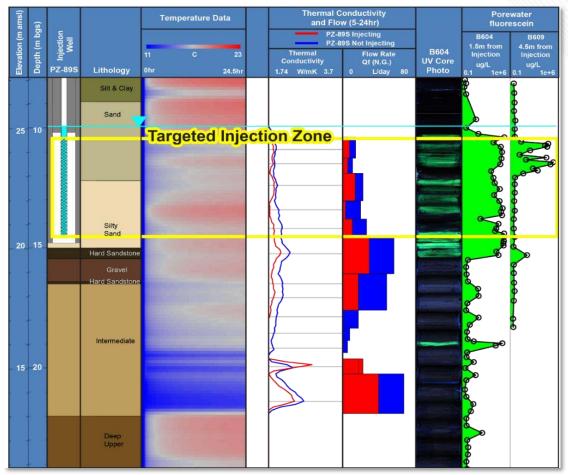

UV Photography of Fluorescein Core Samples

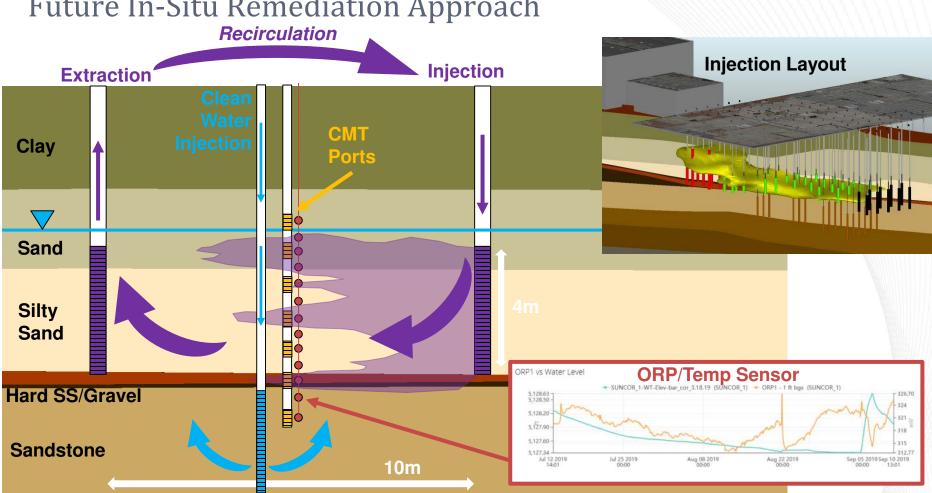

Fluorescein and TCE Core Sample Results


Elev. m asl	Depth - m bgs 1.200	Injection	Stratigraphy		Core Photos		Porewater fluorescein [ug/L]					Rock core TCE [ug/kg]			
		PZ89S	B504	B504	B604 UV	8606 UV	B604 ection: <u>1.5 m</u> Duantifiable BLQ DUANTIFIABLE ND +		B609 ition: 4.5 m antifiable ND	B610 Injection: 4.8 m Quantifiable BLQ ND	B607 Injection: 5.9 Quantifiable BLQ ND +	B504 Injection: 2.9 m Quantifiable BLQ ND +	B604 njection: <u>1.5 n</u> Quantifiable BLQ ND +	B606 njection: 4.4 m Quantifiable BLQ O ND +	B607 hjection: 5.9 m Quantifiable BLQ O ND +
- 25	- 10			Sand Silty Sand			2	» »	a de la comercia de la comerc	+					
20				Hard SST1 Sand & Gravel1 Hard SST2 Intermediate			and the second								
- 15 —	- 20 -			Intermediate Deep Upper			100 Po 7							Ì	

3D Fluorescein Results

Active-distributed temperature sensing for preferential pathway identification and quantification of flow / flux

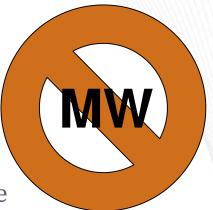




SANBORN || HEAD

A-DTS Results

SANBORN || HEAD



Future In-Situ Remediation Approach

SANBORN HEAD

Humble suggestions

- Distinguish between characterization and monitoring
- Measure and estimate mass flux / discharge
- Evaluate processes before, during, and after remediation
- Re-consider the value of conventional long-term monitoring
- Leverage 3D visualization technologies and predictive models

Thank you!

Brad Green, PG Vice President / Senior Associate bgreen@sanbornhead.com (603) 415-6160

Sam Warner Project Manager <u>swarner@sanbornhead.com</u> (603) 415-6119