
Short Span Steel Bridge Cost Effective Solutions

David Clemens Director – Engineered Product Sales Wheeler

Members

What We Do

- Education (webinars, workshops, forums, conferences)
- Technical Resources (standards, guidelines, best practices)
- Case Studies (economics: steel is cost-effective)
- Simple Design Tools (eSPAN140)
- Answer Questions (Bridge Technology Center)
- Prefabricated Bridge Manufacturers (industry contacts)
- Innovative & ABC Design

Short Span Steel Girder Economics & eSPAN140

Overview

Initial Costs County Case Studies

Design/Supply Examples

Initial Costs – Steel vs Concrete

Preconception: Concrete is Less Expensive than Steel for Typical Bridges

Many Times Steel is Not Considered Paying Too Much? Add Competition

Case Studies from County Bridges

Case Study Bridges: Audrain County, MO

MO Bridge 411 – Built 2012

- 4 Steel Girders
- 47.5 ft Span
- 24 ft Roadway Width
- 2 ft Structural Depth + Slab

MO Bridge 336 – Built 2012

County Crew Built Bridges

- 6 Precast Hollowcore Slabs
- 50.5 ft Span
- 24 ft Roadway Width
- 2 ft Structural Depth + Slab

Side-by-Side Comparison of Total Cost of Bridge

19.3% Total Cost Savings w/ Steel

Steel:

- Total Bridge Costs:
 - Material = \$41,764
 - Labor = \$24,125
 - Equipment = \$21,521
 - Guardrail = \$7,895
 - Rock = \$8,302
 - Engineering = \$8,246
 - TOTAL = \$111,853(\$97.48/ft²)

Concrete:

- Total Bridge Costs:
 - Material = \$67,450
 - Labor = \$26,110
 - Equipment = \$24,966
 - Guardrail = \$6,603
 - Rock = \$7,571
 - <u>Engineering = \$21,335</u>
 - TOTAL = \$154,035

(\$120.83/ft²)

Take Out Engineering & Rock Costs

Steel:

- Total Cost per ft²:
 - Total Cost = $$97.48/ft^2$
 - Construction = \$90.29/ft²
 - No Engineering
 - Adjusted = **\$83.05/ft**²
 - No Engineering or Rock

Concrete:

- Total Cost per ft² :
 - Total Cost = \$120.83/ft²
 - Construction = \$104.08/ft²
 No Engineering
 - Adjusted = **\$98.14/ft**²
 - No Engineering or Rock

Superstructure Only Cost Comparison

Steel:

- Superstructure Only:
 - Time = 10 days
 - Girders = \$21,463
 - Deck Panels = \$7999
 - Reinf. Steel = \$3135
 - Concrete = \$4180
 - Labor = \$5522
 - <u>Equipment* = \$500</u>
 - TOTAL = \$42,799

\$37.54 / ft²

Concrete:

- Superstructure Only:
 - Time = 13 days
 - Slab Girders = \$50,765
 - Deck Panels = \$0
 - Reinf. Steel = \$724
 - Concrete = \$965
 - Labor = \$4884
 - <u>Equipment* = \$4000</u>
 - TOTAL = \$61,338

\$50.61 / ft²

True Steel vs Concrete Cost Comparison

Steel:

25.8% Superstructure Cost Savings

Concrete:

 Superstructure total cost of \$37.54 per ft² Superstructure total cost of \$50.61 per ft²

Same bridge conditions:

- Structural Depth = 2 ft + Slab (No Difference in Approaches)
- Roadway Width = 24 ft
- Same Abutments for Both Can be Used (Steel Could Use Lighter)
- Same Guard Rail System
- Same Work Crew

Case Study Bridges: Additional Bridges in MO

Superstructure			St	teel			Concrete				
Bridge Number	061	140	149	152	710	AVG	028	057	069	520	AVG
Year Built	2008	2008	2008	2009	2010	AVG	2009	2010	2011	2006	AVG
Span Length	50	50	40	62	64	53.2	36	36	38	40	37.5
Skew	0	0	0	30	35	13	0	15	20	30	16.25
Cost Summary											
- Labor	\$14,568	\$21,705	\$15,853	\$24,765	\$31,949	\$21,768	\$12,065	\$15,379	\$14,674	\$19,044	\$15,291
- Material	\$56,676	\$53,593	\$46,282	\$92,821	\$69,357	\$63,746	\$51,589	\$54,450	\$50,576	\$46,850	\$50,866
- Rock	\$6,170	\$6,216	\$3,694	\$8,235	\$6,501	\$6,163	\$5,135	\$7,549	\$5,378	\$3,621	\$5,421
- Equipment	\$7,487	\$12,026	\$7,017	\$19,579	\$15,266	\$12,275	\$5,568	\$10,952	\$11,093	\$14,742	\$10,589
- Guardrail	\$4,715	\$7,146	\$3,961	\$7,003	\$7,003	\$5,966	\$4,737	\$4,663	\$5,356	\$3,323	\$4,520
Construction Cost	\$89,616	\$100,686	\$76,807	\$152,403	\$130,076	\$109,918	\$79,094	\$92,993	\$87,077	\$87,580	\$86,686
CONST. COST PER FT ²	\$74.68	\$83.91	\$80.01	\$102.42	\$84.68	\$86.09	\$91.54	\$107.63	\$95.48	\$91.23	<mark>\$96.32</mark>

Summary on Initial Costs

Avoid the Misconception Steel & Concrete Bridges Are Competitive

Both Steel & Concrete Bridges Should Be Considered for Local Roads

Axtell, UT

Buffalo County, WI

Buffalo County, WI

Saint Louis County, MN

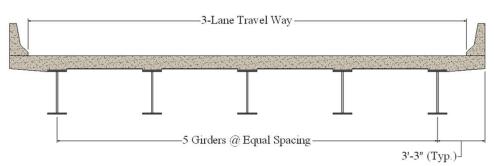
Short Span Steel Bridge Alliance Industry-Wide Effort

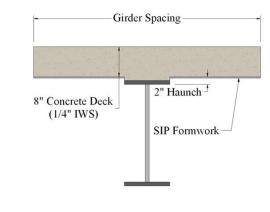
Goal:

- Economically competitive (repetitive details and member sizes)
- Expedite the design process

Bridge Parameters:

- Span lengths: 20 ft to 140 ft (in 5 ft increments)
 - 20', 25', 30', ..., 135', 140'
- Four increments of girder spacing:
 - 6'-0", 7'-6", 9'-0" and 10'-6"
- For each of these increments, the following were designed:
 - Steel girders
 - Shear stud & stiffener layouts
 - Welding and fabrication details
 - Elastomeric bearings
 - Concrete deck design


Three Types of Girder Bridges:



- Homogeneous plate girders (50 ksi steel)
- Lightest weight rolled beams (50 ksi steel)
 - Utilizing the lightest weight girder necessary
- Limited depth rolled beams (50 ksi steel)
 - Designed to meet a target L/D of 25

Bridges were Designed According to AASHTO LRFD Specs:

- Strength I, Service II, Fatigue, Constructability, L/800 Deflection
- HL-93 Vehicular Live Loading

Additional Design Loads:

- SIP unit weight: 15 psf
- FWS: 25 psf
- Concrete Barriers = 305 lb/ft
- Misc. steel wt. increase = 5%
- f_c' = 4,000 psi

- Concrete unit weight = 150 pcf
- Steel unit weight = 490 pcf
- Concrete haunch = 2 in
- Constant flange width
- Constant web height

Summary of lightest weight rolled shape designs:

с	COMPOSITE ROLLED BEAM WITH PARTIALLY STIFFENED WEB - LIGHTEST WEIGHT DESIGNS									
SPAN (L) - ft.		GIRDER S	SPACING		SELECTED SECTIONS RECOMMENDED	DIAPHRAGM SPACING (C) - ft.				
	6'-0"	7'-6"	9' ₋ 0"	10'-6"	RECOMMENDED	(0) - 10				
40	W21x62	W21x73	W24x76	W24x84	W24x84	20				
45	W24x68	W21x101	W27x84	W30x90	W30x90	22.5				
50	W27x84	W21x111	W30x99	W30x108	W30x108	25				
55	W30x90	W24x117	W30x116	W33x118	W33x118	27.5				
60	W30x108	W27x129	W33x118	W36x135	W36x135	20				
65	W33x118	W30x132	W36x135	W40x149	W40x149	21.67				
70	W33x130	W30x148	W40x149	W40x167	W40x167	23.33				
75	W36x135	W36x150	W40x167	W36x182	W36x210	25				
80	W40x149	W36x160	W36x182	W36x210	WJOXZ TO	20				
85	W40x167	W36x182	W36x210	W36x231	W36x247	21.25				
90	W40x183	W40x183	W40x211	W36x247	¥¥30XZ41	22.5				
95	W40x211	W40x199	W40x235	W40x249	W44x262	23.75				
100	W44x230	W40x211	W40x249	W44x262	VV44XZUZ	25				

eSPAN140 Overview

eSPAN140 is an <u>easy-to-use</u> and <u>free</u> resource for bridge engineers & owners.

In 3 easy steps, multiple steel solutions are recommended!

Step 1. Create a User's Account

Developed by the Short Span Steel Bridge Alliance

http://www.espan140.com/

Step 2. Input Your Specific Project Details

Step 3. View Your Instant Customized Solutions Books

eSPAN140 Overview

Start New Project

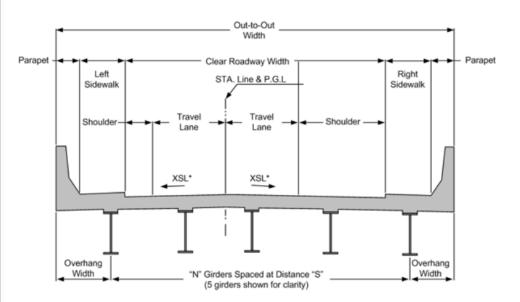
My Projects

Welcome to eSPAN140. If this is your first time here, please click on "Start New Project" to begin.

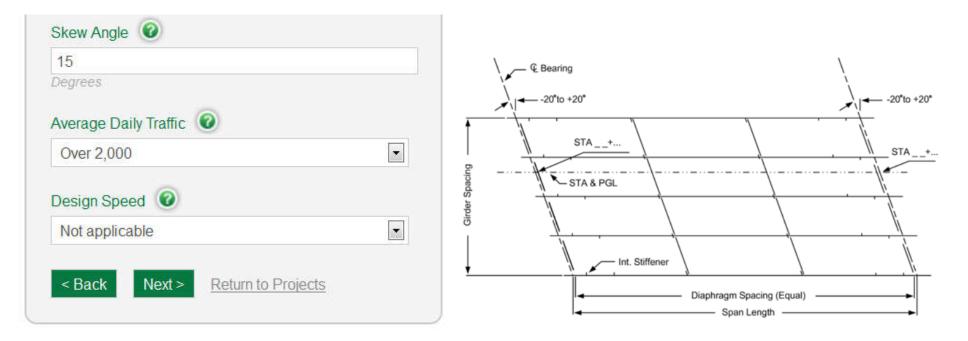
If you have already created a project, please use the table below to view past projects, complete pe existing inputs you provided, please click on "Duplicate". This will allow you to create a new project I have multiple bridges to design and have only a few input values to change).

Start New Project

Step 2: Project Information


Project Name*		
Sample Bridge	© Bearing	
City/County*	STA+	-20°to +
Morgantown State/Province*	STA & PGL	STA_
West Virginia	Birder Girder	
Roadway Name	Int. Stiffener	
Main Street	Diaphragm Spacing (Equal)	
Bridge Span Length* 🔞	Span Length	
82 4 Feet Inches		
Next > <u>Return to Projects</u>		

Step 2: Project Details (general dimensions)


# of Striped Traffic Lanes*	Out-to-Out Width
2	Parapet Pa
Roadway Width* 🔞	Left STA. Line & P.G.L Right Sidewalk
30 0	Shoulder
Feet Inches	
ndividual Parapet Width 🔞	XSL* XSL*
1 3	
Feet Inches	
ndividual Deck Overhang Width 🔞	Overhang Width "N" Girders Spaced at Distance "S" Width
3 0	(5 girders shown for clarity)
Feet Inches	

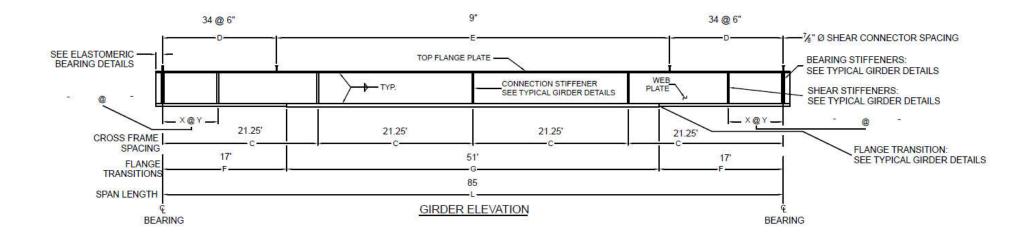
Step 2: Project Details (pedestrian access option)

Number	of Sidewalks	
2		•
Feet	k One Width Inches	
Feet	Inches	

Step 2: Project Details (remaining details)

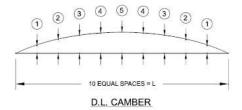
eSPAN140 Overview

Range of Available Solutions


			Bri		an Lei	ngth				
Solution Type*	0'	20'	40'	<mark>60'</mark>	80'	100'	120'	140'	Skew Angle	Overhang Width
Rolled Beam (40' to 100')**					2				+/- 20 degrees	3'3" or less
Homogeneous Plate Girder (60' to 140')**									+/- 20 degrees	3'3" or less
Corrugated Steel Pipe/Structural Shape (0' to 85')									All	All
Manufacturer's Steel Solutions (all)									All	All

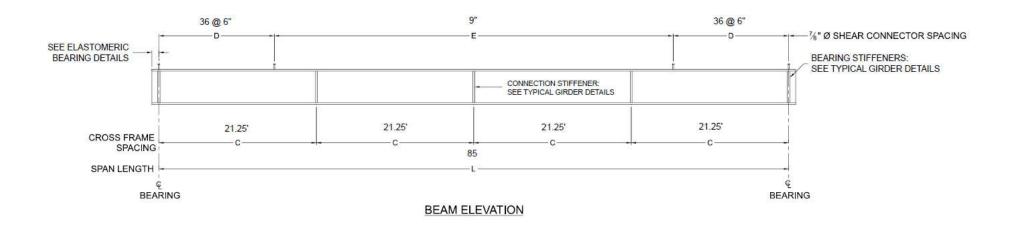
Step 3: Customized Solutions Book (.pdf format)

- Standard Design and Details of Short Span Steel Bridges Solutions
 - Rolled Beam Recommendations
 - Plate Girder Recommendations
- Standard Design of Corrugated Steel Pipe and Structural Plate Solutions
- Manufacturer's Steel Solutions (SSSBA Partners)
 - Customized Solutions from Members of the SSSBA
- Durability Solutions (SSSBA Partners)
 - Galvanized & Paint
 - Weathering Steel
- Additional Contact Information
 - Producers, Service Centers, Fabricators, Fasteners, Coaters and Industry Organizations


Sample Plate Girder (Homogeneous) Elevation

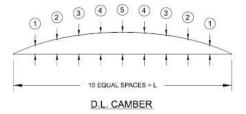
COMPOSITE PLATE GIRDER WITH PARTIALLY STIFFENED WEB - 4 GIRDERS AT 8' 10" GIRDER SPACING, HOMOGENEOUS

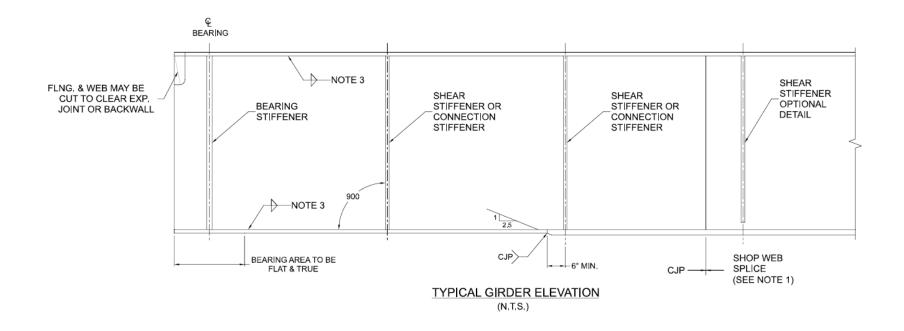
Sample Plate Girder (Homogeneous) Information


			PLATE GIRE	ER SIZE			5			SHEAR CONNECTOR MAX. SPAC-		1
SPAN (L) - ft	BOTTOM FLANGE ft TOP FLANGE (F)		BOTTOM FLANGE (G)			DIAPHRAGM			ING		INDIVIDUAL GIRDER	
	-in	LENGTH - Ft	PLATE - in	LENGTH - Ft	WEB PLATE- in	E- in SPACING (C) - ft		Y - ft. (SPACING)	D	E	WEIGHT	
85	14 x 3/4"	14 x 1"	17'	14 x 2"	51'	32 x 1/2"	21.25'	-	-	34 @ 6"	9"	14 <mark>,1</mark> 44 lbs

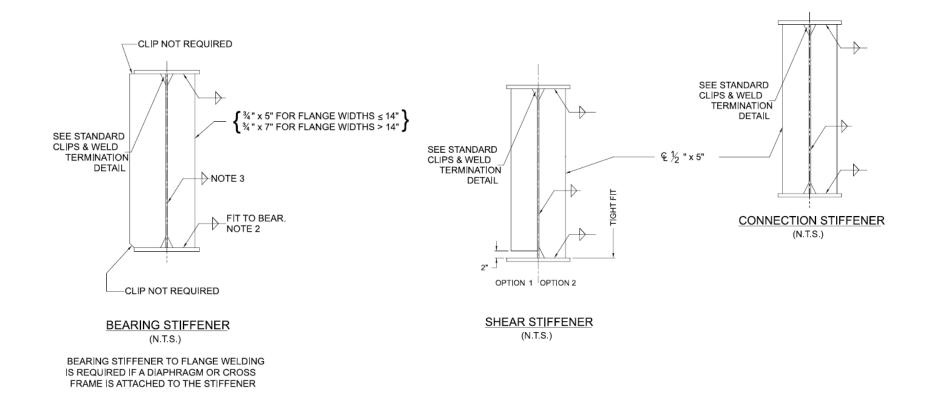
	ST	EEL D.L. CAMBER	- in	17.		TOTAL D.L. CAMBER - in				
1	2	3	4	5	1	2	3	4	5	
0.251"	0.469"	0.636"	0.742"	0.778"	1.803"	3.358"	4.538"	5.288"	5.545"	

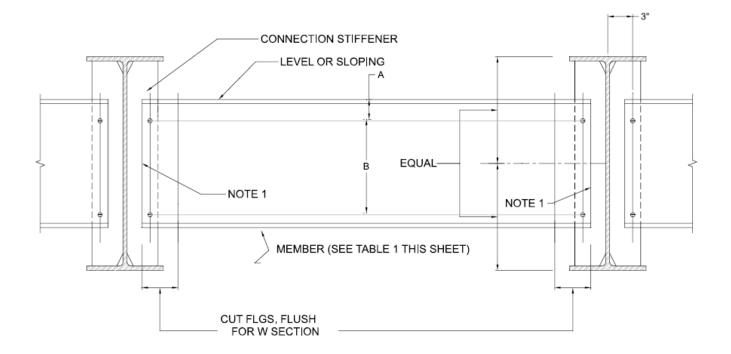
Sample Rolled Beam (Lightest Weight) Elevation

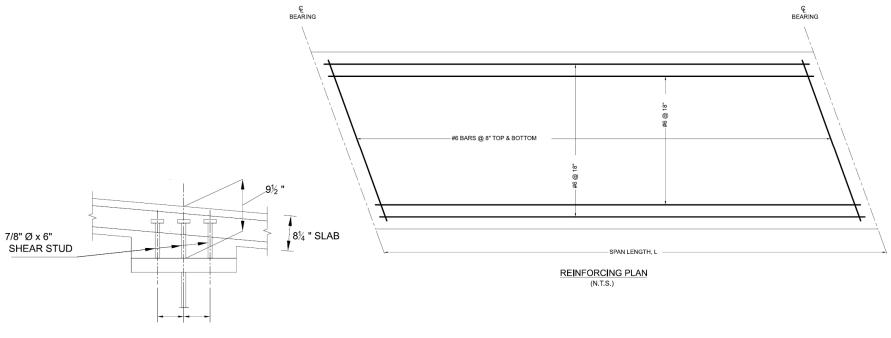

COMPOSITE ROLLED BEAM WITH PARTIALLY STIFFENED WEB - 4 GIRDERS AT 8' 10" GIRDER SPACING, LIGHTEST WEIGHT


Sample Rolled Beam (Lightest Weight) Information

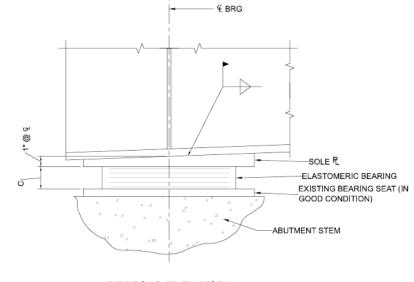
CDAN //) · #	SELECTED SECTIONS	DIAPHRAGM SPACING (C)	SHEAR CONNECT	OR MAX. SPACING	WEICHT		
SPAN (L) - ft	SELECTED SECTIONS	- ft	D	E	WEIGHT		
85	W36x247	21.25'	36 @ 6"	9"	20,995 lbs		


	ST	EEL D.L. CAMBER	- in			TO	TAL D.L. CAMBER	-in	
1	2	3	4	5	1	2	3	4	5
0.219"	0.415"	0.568"	0.665"	0.698"	1.259"	2.381"	3.259"	3.817"	4.008"


Typical Girder Elevation


Typical Stiffener Details

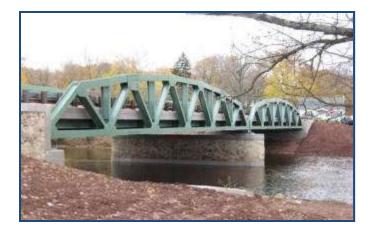
Typical Diaphragm Details


Typical Deck & Shear Stud Details

DETAIL A

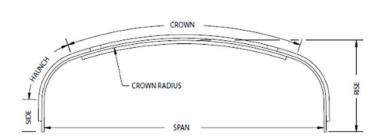
Typical End Bearing Details

BEARING ELEVATION OPTION "A" (N.T.S.)

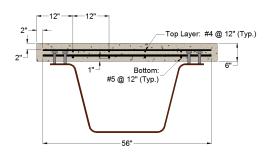

	ELASTOMETRIC BEARING DETAILS - in								
A	В	С	D	NO. OF LAYERS	THICKNESS - in				
16"	18"	4.375"	12"	5	0.625"				

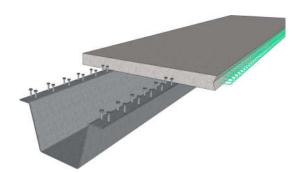
Durability Solutions

- Weathering steel
- Galvanized steel
- Painted steel



Also Available through eSPAN140


Buried Steel Bridge Standards & Press-Brake Tub Girders



Also Available through eSPAN140 from Alliance Members

Manufacturer Member Solutions

5 Ways to Keep Learning About Steel Bridges

www.ShortSpanSteelBridges.org

Questions? Dan Snyder, Director, SSSBA, <u>dsnyder@steel.org</u>, (301) 367-6179

t in Roome Courty M

Website:	ShortSpanSteelBridges.org
Twitter:	@ShortSpanSteel
Facebook:	Short Span Steel Bridge Alliance