

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

Paulo B. Lourenço

pbl@civil.uminho.pt

Universidade do Minho

Introduction

Cultural heritage

Identity

- □ Conservation of cultural heritage buildings is a demand from society
- □ No memory, no identity; no identity, no nation, A.D. Smith, LSE, 1995
- □ We shape our buildings; thereafter they shape us, W. Churchill, 1943

Economy

- □ Europe: tourism is 10% of the GDP and 12% of the employment
- Europe is the world's no. 1 tourist destination (50% of tourist arrivals)
- □ 45% of the UNESCO World Heritage sites are within Europe

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 4

Universidade do Minho

Heritage at risk

- **European Charter of the Architectural Heritage 1975**
- □ Art^o 6: This heritage is in danger.
- □ It is threatened by ignorance, obsolescence, deterioration of every kind and neglect. Urban planning can be destructive when authorities yield too readily to economic pressures and to the demands of motor traffic. Misapplied contemporary technology and ill-considered restoration may be disastrous to old structures. Above all, land and property speculation feeds upon all errors and omissions and brings to nought the most carefully laid plans.

Universidade do Minho

Buildings do not last forever

Lack of maintenance, deterioration & errors

Buildings cost money!

Estimate for the US government: Average value of 6% of annual building cost, with 35% of this value for operation, 46% for preventive maintenance, repair and replacement of parts, and 19% for recapitalization

Extreme events

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 8

Some conceptual errors and Code changes

Nov. 7, 1940 10:00 AM

Ronan Point, 1968 Disproportionate collapse

Tacoma Narrows Bridge, 1940 Flutter instability July 1 – November 7, 1940

Start of resonance vibration of bridge in torsional mode TCR 00:11:19:10

Millennium Bridge, 2020 Lateral frequency modes

Prestressed bridge ban in UK, after several post-tension bridges collapsed in a short period of 10 years

25 September 1992: Department of Transportation banned post-tensioned grouted duct techniques from UK bridge construction. Lifted after 4 years and 10 M£ study

isise Institute for Sustainability and Innovation in Structural Engineering

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 10

Universidade do Minho

Timber bridge in Norway 'built to last 100 years' collapses after a decade

Bridge was inspected along with other wooden truss bridges in 2016 following the collapse of Perkolo Bridge, another timber crossing in Norway

I-35 bridge over the Mississippi River

The National Transportation Safety Board (NTSB) identified a design flaw and inadequate inspections as the primary causes of the collapse. The tragedy led to increased awareness of the importance of regular inspections and maintenance of aging infrastructure

isise Institute for Sustainability and Innovation in Structural Engineering

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 12

Durability

Louis Khan (USA, 1901-1974) IIMA, Ahmedabad, India, 1962-1974 You say to brick, "What do you want, brick?" Brick says to you, "I like an arch." if you say to brick, "arches are expensive and I can use a concrete lintel over an opening. What do you think of that, brick?" Brick says: "I like an arch." —Louis Kahn

"I'm now wiser from that time. Now I can say that reinforcement was a recipe for a disaster" Architect MS Satsangi from the team in Ahmedabad, 2015

Reinforced masonry walls

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 14

RC slabs and staircases

Hazards: Natural and made-made

- Climate change (and non-deliberate human action)
- Deliberate human action

isise Institute for Sustainability and Innovation in Structural Engineering

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 16

Universidade do Minh

Growing value at risk

- The U.S. National Academy of Sciences projected for the next 50 years the human population to increase in ±50% with ±40% more life expectancy. This means >100% the demand for housing
- Half of the global population lives in cities, and by 2050 two-thirds (2100, 85%) is expected to live in urban areas (UN, World Urbanization Prospects)

Risk assessment

Risk evaluation for the built environment is associated with the level of hazard, building vulnerability and level of exposure

Within this holistic approach, building vulnerability is the most important, not only because of the physical consequences in a disaster, but because it is where engineering can intervene, reducing the level of vulnerability and consequently the level of physical damage, life loss and economical loss

isise Institute for Sustainability and Innovation in Structural Engineering	Universidade do Minho
Preservation of Historic Structures: Methodology, Safety Assessment and Practice	P.B. Lourenço 18

Risk assessment

Risk evaluation for the built environment is associated with the level of hazard, building vulnerability and level of exposure

Within this holistic approach, building vulnerability is the most important, not only because of the physical consequences in a disaster, but because it is where engineering can intervene, reducing the level of vulnerability and consequently the level of physical damage, life loss and economical loss

Earthquakes

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 20

The seismic problem

1755, Lisbon A perfect disaster: tsunami with 10 m, fire for 5 days, 85% of the buildings destroyed, up to 90.000 deaths = 30% of population, Enlightenment – Kant / Voltaire)

..., 2009, 2012, 2016, 2017, Italy

2011, Spain

Existing masonry: Churches in New Zealand (EQs 2010-11)

- □ Red: unsafe building with access forbidden
- □ Yellow: safety compromised but urgent access allowed
- Green: no restrictions

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 22

Learning from failure: 2017 Lesvos Earthquake (Greece)

12th of June 2017, at 12:28 GMT, a shallow earthquake with magnitude Mw=6.3 struck SSE of Lesvos Island

Universidade do Minho

Damage and Failure Patterns: Mostly out-of-plane

Local failures of the external leaf due to wall disintegration

isise Institute for Sustainability and Innovation in Structural Engineering

Corner mechanism

isise Institute for Sustainability and Innovation in Structural Engineering

<page-header><page-header>

Typical out-of-plane failures under one-way and two-way bending

Universidade do Minho

- Existing buildings are usually rather vulnerable: (a) fragile materials;
 (b) heavy construction; (c) inadequate connections; (d) inadequate design and construction; (e) lack of maintenance
- □ Simple and moderate cost measures can make drastically change the situation

Earthquakes: Existing vs. New

Blast & Impact

- U Worst case scenario in modern masonry: embedded ring beam + unfilled vertical joints
- □ Minor damage for design earthquake in Lisbon (rock)
- Significant damage but very ductile response for 2.5 times the Lisbon design earthquake (rock)

isise Institute for Sustainability and Innovation in Structural Engineering

isise

Universidade do Minho

Context

Terrorism

Gas explosions
Isise Institute for Sustainability and Innovation in Structural Engineering

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 32

Blast: Behavior

150

100 50

0

Results

10

0

i...

50

10

100

Time (s) **DIF Influence** 30

20

150

Universidade do Minho

40

200

Other Hazards

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 36

Natural and made-made hazards

□ 84% of wildfires caused be humans (Boulder's Earth Lab, UColorado)

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 38

Landslides

Risk. Perception and communication

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 40

Earthquakes

- Since 1960, 40% of natural disaster deaths occurred as a result of earthquake events
- □ 60% of these are due to masonry buildings (stone, clay, earth, lime,...)
- □ More than half of the built heritage is unreinforced masonry

Eqs since 1995, 36.000 people/yr

Blast and terrorism

 Eurobarometer: The risk of a terrorist attack is considered to be high by 40% of respondents in the EU (47% medium risk)

Risk Management, Technical Experts and Society

- **D** Perception and communication
- Assessment and diagnosis
- □ Solutions, costs and implementation

Our World of Data, current billion USD

In the last 50 years, costs increased exponentially

□ How to solve the mathematical indeterminacy of huge consequences and low probabilities?

Tools and methodology

isise

Examples at building level

San Sebastian Basilica, Manila, Philippines

- **Construction: 1890-1891**
- □ Unique gothic metallic church. 9 steam boats from Belgium and 1500 ton
- □ 3 previous buildings (1639, masonry, fire and revolution), 1645 (earthquake), 1863 (masonry, earthquake), 1880 (timber, earthquake)

Institute for Sustainability and Innovation in Structural Engineering

P.B. Lourenço | 48

Universidade do Minho

Complex structure. Important corrosion

Blessed Sacrament Cathedral, Christchurch, NZ

- Construction 1901-1905
- □ Seismic strengthening: 2004
- □ Major damage in EQs 2010-11

isise Institute for Sustainability and Innovation in Structural Engineering

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 52

Universidade do Minho

Examples at territorial level

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 54

Seismic vulnerability assessment and scenarios

Simple forms and indicators

Parameter		Class C_{vi}				Weight	Relative weight
		A B C D		D	p_i	over I_v	
1. Stru	ctural building system						
P1	Type of resisting system	0	5	20	50	0.75	
P2	Quality of resisting system	0	5	20	50	1.00	
P3	Conventional strength	0	5	20	50	1.50	46/100
P4	Maximum distance between walls	0	5	20	50	0.50	
P5	Number of floors	0	5	20	50	1.50	
P6	Location and soil conditions	0	5	20	50	0.75	
2. Irre	gularities and interactions						
P7	Aggregate position and interaction	0	5	20	50	1.50	
P8	Plan configuration	0	5	20	50	0.75	27/100
P9	Height regularity	0	5	20	50	0.75	
3. Flo	or slabs and roofs						
P10	Facade wall openings and alignments	0	5	20	50	0.50	
P11	Horizontal diaphragms	0	5	20	50	1.00	15/100
P12	Roofing system	0	5	20	50	1.00	
4. Con	servation status and other elements						
P13	Fragilities and conservation status	0	5	20	50	1.00	12/100
P14	Non-structural elements	0	5	20	50	0.50	

isise Institute for Sustainability and Innovation in Structural Engineering

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 56

Seismic vulnerability assessment and scenarios

Total number of buildings: 192	Macroseismic intensity, <i>I_{EMS-98}</i>							
	VII	VIII	IX	Х				
Collapsed	0	0	15 (7.7%)	101 (52.7%)				
Unusable	3 (1.8%)	33 (17.3%)	93 (48.2%)	72 (37.3%)				
Total number of inhabitants: 1596	Macroseismic intensity, I_{EMS-98}							
	VII	VIII	IX	Х				
Dead and severely injured	0	0	37 (2.3%)	252 (15.8%)				
Homeless	29 (1.8%)	278 (17.4%)	856 (53.7%)	1184 (74.2%)				

Universidade do Minho

Retrofitting	Intensity, $I_{\rm EMS-98}$							
package	V	VI	VII	VIII	IX	Х	XI	XII
RP1	-	-	1.08 M€	5.85 M€	12.24 M€	17.15 M€	19.23 M€	20.10 M€
RP2	-	-	-	1.20 M€	7.89 M€	12.53 M€	14.39 M€	15.13 M€
RP3	-	-	-	-	1.80 M€	5.86 M€	6.12 M€	5.91 M€

Emergency planning: Evacuation routes / inaccessible areas

Definition of evacuation routes for a scenario of I_{EMS-98} =VIII and possible inaccessible areas

Institute for Sustainability and Innovation in Structural Engineering

Methodology: International Recommendations for Cultural Heritage

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 63

isise Institute for Sustainability and Innovation in Structural Engineering

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 68

Universidade do Minho

Institute for Sustainability and Innovation in Structural Engineering

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 70

Past understanding

"Conservation" is warranted by the powerfulness of the intervention

Blind confidence in modern materials and technologies

Mistrust towards original or ancient materials and original resisting resources of the building

The value of original / ancient structure and structural principles is not recognized

The importance of previous studies is not fully recognize

Significant negative experience accumulated

Athens Charter (1931)

Recommends the use of concrete and other modern material and techniques for restoration purposes. Added materials and components should be hidden to avoid altering the historical aspect of the building.

ICOMOS Methodology

therefore heavy-handed conservation measures or inadequate safety levels.

METHODOLOGICAL CONSISTENCY

DIAGNOSIS

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 74

The peculiarity of heritage structures, with their complex history, requires the organisation of studies and analysis in steps that are similar to those used in medicine. Anamnesis, diagnosis, therapy and controls, corresponding respectively to the condition survey, identification of the causes of damage and decay, choice of the remedial measures and control of the efficiency of the interventions.

We have it all 😊

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 76

Experimental characterization

Survey and visual inspection

ISISE Institute for Sustainability and Innovation in Structural Engineering

Universidade do Minho

Monitoring

SISE Institute for Sustainability and Innovation in Structural Engineering

Remedial Measures

What not to do (I)?

The need to understand materials, structural arrangements and construction techniques from existing buildings

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 84

What not to do (II)?

It is necessary to adopt adequate safety evaluation procedures (history, quantitative analysis, qualitative analysis, experimental analysis)

Case studies

Swimming Pools at Leça da Palmeira, Portugal, by Álvaro Siza

Institute for Sustainability and Innovation in Structural Engineering

Universidade do Minho

Some of the works done (iii)

Non-destructive testing: Schmidt hammer and color analysis

Timber characterization

SISE Institute for Sustainability and Innovation in Structural Engineering

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 90

Universidade do Minho

Some of the works done (iv)

Cement paste characterization: Thermogravimetry, nanoindentation, X-ray analysis and diffraction, scanning electron microscopy, mercury intrusion porosimetry isise Institute for Sustainability and Innovation in Structural Engineering

Universidade do Minho

Some of the works done (v)

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 92

Repair approach #1 (i)

Displaced fragment, volume loss and biological colonization

Large volume loss and shrinkage / thermal movement Institute for Sustainability and Innovation in Structural Engineering

Repair approach #1 (ii)

Wooden molds

Replicating original formwork

Materials: Sand, gravel, yellow granite powder, black limestone powder, pigments, natural and Portand cement

isise Institute for Sustainability and Innovation in Structural Engineering

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 94

Repair approach #1 (iii)

Selection of the sample by Arch. Álvaro Siza

Repair approach #1 (iv)

Cleaning and biocide

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 96

<image>

Stainless steel installation

isise Institute for Sustainability and Innovation in Structural Engineering

Repair approach #1 (vi)

Mold, silicon paper and mortar filling

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 98

Repair approach #1 (vii)

Institute for Sustainability and Innovation in Structural Engineering

Repair #2 (i)

isise Institute for Sustainability and Innovation in Structural Engineering

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 100

Universidade do Minho

Repair #2 (ii)

Repair #2 (iii)

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 102

Repair #2 (iv)

isise Institute for Sustainability and Innovation in Structural Engineering

Repair #2 (v)

(c)

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 104

Repair #2 (vi)

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 106

Description

□ Large size building with in plan dimensions (main body 110 x15 m²) and 5 storeys (floor level + 4 storeys)

- RC slabs and inner walls and ashlar granite masonry in exterior walls
- □ One of the first RC buildings in Braga (1930's)
- □ 5th floor with concrete floor with no use of attic
- 3rd and 4th floors originally for students dorms. Slabs supported in transverse beams, supported in external walls. Infill walls in RC (storey 2 / 5)

Description (I)

Main façade

Typical corridor (Level 2, 3 and 4)

isise Institute for Sustainability and Innovation in Structural Engineering

Non-aligned walls and beams

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 108

Description (II)

Hall at level 0 (span of 13 m)

Irregularities

isise Institute for Sustainability and Innovation in Structural Engineering

Safety Assessment of Slabs

- New use: Upper levels (3 and 4) to be used as archive, while lower levels (1 and 2) to remain as school. Very high loads planned (11 to 15 kN/m²)
- Slabs with be OK for previous use. Strengthening needed for new use (half of the required reinforcement). A set of HEB 100 placed transversely to the cell, supported in a L 80x80 and a new timber board would be necessary (700 euro per cell).

Safety Assessment of Full Building (IV)

Load combination 1.35G+1.35Q and displacement at mid span (Level 2)

Progressive separation between Level 2 beams and walls

Institute for Sustainability and Innovation in Structural Engineering

Typical steel struss at roof level

Universidade do Minho

Universidade do Minho

Social Housing, Porto, Portugal

Description

- Municipality of Porto is the largest landlord in Portugal (43 neighborhoods, 40.000 tenants)
- 21 neighborhoods have been built around 1960's with reinforced concrete / structural masonry systems. Original design projects, if any, cannot be found. They include 4500 balconies
- □ The usual configuration includes three types of balconies: in open staircases; inside flats; open long galleries


```
Sise Institute for Sustainability and Innovation in Structural Engineering
```

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 118

Universidade do Minho

Accident

□ An accident occurred: collapse of one balcony with 3 injured

Phase I - Inspection

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 120

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 122

Phase II – Strengthening Case 1 – Details

Phase II – Strengthening Case 1 – Execution

Staircase (go down)

Staircase (go up): Upper view

isise Institute for Sustainability and Innovation in Structural Engineering

Lower view

iversidade do Minho

Preservation of Historic Structures: Methodology, Safety Assessment and Practice P.B. Lourenço | 124 Phase III – Balcony with **Steel Plates** Ancoragem tipo HIT-HY 150 •HIT-V-F (5.8), M16 Ancoragem tipo HET-HY 150 M +HET-V (5.8), M16 **Studied solutions: External steel solution** Argamassa de epoxy Epo SikaDur-30 (e#2 a 5 Steel profiles placed in the lower part of the slab -ragem tipo HET-HY 150 MA Ancoragem tipo HIT-HY 150 M +HIT-V (5.8), M16 Notes: **Steel protection** Welding control (before EN1090)

Institute for Sustainability and Innovation in Structural Engineering

Phase III – Balcony with Steel Plates – Execution

Isise Institute for Sustainability and Innovation in Structural Engineering

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 126

Universidade do Minho

Phase III – Running balcony

	<u>= </u>	stand barrata ba	
		1	
	FI Fand	ge-	
		P	
linexernation	iniziari di come		 accoccel

Nailing with and without socket Notes:

Spacers Injection inlet / outlet

Phase III – Vertical staircase

		FIII		HH-	l h	
			9 9		h	
	tim Fl		al or		[h	
		7	(and the second			
				COLUMN STATES		

Staircase ramps (ascending / descending)

isise Institute for Sustainability and Innovation in Structural Engineering

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 128

Universidade do Minho

Phase III – Vertical staircase – Execution

isise Institute for Sustainability and Innovation in Structural Engineering

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 130

Phase III – Isolated Staircase – Execution

isise Institute for Sustainability and Innovation in Structural Engineering

Universidade do Minho

Cathedral of Porto

Selected Aspects of the Works (I)

Remedial measures in the roof structures included cleaning, application of biocide, application of preservation products, consolidation, strengthening and local replacement

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 134

Selected Aspects of the Works (II)

Replacement of the ceramic tiles including new anchors, traditional eaves, strengthening in the corners, introduction of under-roof sheating and walkways.

Selected Aspects of the Works (III)

Remedial measures for stone, including removal of biological activity, dry and low pressure water cleaning, localised consolidation...

...application of water repellents, reconstitution of voids, crack closure and injection, replacement of iron ties, and, exceptionally, replacement of stone pieces.

Repair of grilles and all iron elements included control of anchors and new anchors, and measures for proper rainwater flow, plus protection against further corrosion

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 138

Physical protection of the granite stone include sheeting in the external horizontal planes and installation of a electrical anti-pigeon system.

Selected structural Issues

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 140

Structural Issues. Towers

North Tower

South Tower

Visual inspection

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 142

Ties heavily stressed, deformed and broken

Severe cracking and bulging (lack of integrity and outer leaf loose)

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 144

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 146

Getty SRP

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 148

Cusco, 1950

Pisco, 2007

Misca, 2014

Seismic Retrofitting Project (SRP), after GSAP Seismic Stabilization of Historic Structures (1990–96)

PHASE I: RESEARCH FEASIBILITY PROTOTYPES PEER REVIEW GROUP NDT: PROSPECTIONS SURVEY AND GRAPHICS THERMO-IMAGING CONSTRUCTION ASSESSMENT PHASE II: ANALYSIS, TESTING AND DESIGN STATIC AND DYNAMIC TESTS MODELING ANALYSIS NUMERICAL MODELING PROTOTYPES STRUCTURAL BEHAVIOUR TRADITIONAL RETROFITTING HIGH-TECH RETROF.TECHNIQUES TECHNIQUES **RETROF.TECHNIQUES** NUMERICAL MODELING PROTOTYPES RETROFITTED PHASE III: DISSEMINATION WORKSHOPS TECHNICAL GUIDELINES MANUALS FOR IMPLEMENTATION PHASE IV: IMPLEMENTATION MODEL CONSERVATION PROJECT

Getty Conservation Institute, Los Angeles

isise Institute for Sustainability and Innovation in Structural Engineering

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 150

Prototype buildings

Church of Kuño Tambo

Casa Arones

Hotel El Comercio

isise

Structural description and damage

Church of Kuño Tambo (KT)

- Built in 17th century
- Valuable mural paintings

Structure

- Single nave with a sacristy and a baptistery
- Adobe walls with rubble stone base course
- Buttresses
- Single gable timber roof
- Timber ties and wall plates

Se Institute for Sustainability and Innovation in Structural Engineering

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 154

Church of Kuño Tambo (KT)

F

Damage

- Vertical cracks
- Loss of material
- Deterioration

Diagnosis

- Earthquakes
- Settlements
- Lack of maintenance

Universidade do Minho

Ica Cathedral (IC)

Built in 18th century, national monument since 1982

Structure

- External masonry envelope (rubble stone, fired brick, rubble stone)
- Internal timber frame (quincha technique)

Institute for Sustainability and Innovation in Structural Engineering

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 156

rsidade do Minh

Ica Cathedral (IC)

- Collapse of the roof system
- Vertical cracks
- Loss of material
- Deterioration

Diagnosis

- Earthquakes in 2007 (MW 7.9-8.0) and in 2009 (MW 5.8)
- Lack of maintenance

Strengthening

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 158

Methodology

Institute for Sustainability and Innovation in Structural Engineering

Instra Strengthened model

Unli

0.12

lodel-1 Model-2

Model-3

nited timber

0.16

0.20

Failure mechanism in terms of tensile strains

Institute for Sustainability and Innovation in Structural Engineering

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 164

ersidade do Minh

Pushover analysis (IC)

Seismic capacity higher than 0.5 0.45 the design PGA (0.45g) 0.4 S-N STRENGTHENING 0.35 N CURRENT STATE Out-of-plane bending 0.3 Step value (g) 0.28 0.25 mechanism, activating both the 0.2 longitudinal walls 0.15 0.1 Damage more distributed in the 0.05 0.15 0.2 0.05 0.1 north-west corner Horizontal displacement (m) Current state Strengthening schem Failure mechanism in terms of tensile strains

Institute for Sustainability and Innovation in Structural Engineering isise

Important message ©

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 166

Wrong doing...

Institute for Sustainability and Innovation in Structural Engineering

Wrong doing...

isise Institute for Sustainability and Innovation in Structural Engineering

isise Institute for Sustainability and Innovation in Structural Engineering

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 168

갂

Universidade do Minho

Hopefully doing right...

Universidade do Minho

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

P.B. Lourenço | 170

Conclusions & Prospects

- □ Conservation of the built heritage is the present of construction in Europe and will gain increasing relevance in the world context
- □ The safety assessment of heritage buildings poses a strong demand on structural engineering skills and adopted structural analysis techniques
- □ Structural conservation is an exciting topic, challenging engineers and architects to think out of the box and go beyond standard practices

Preservation of Historic Structures: Methodology, Safety Assessment and Practice

Paulo B. Lourenço

pbl@civil.uminho.pt

Tube https://www.youtube.com/user/isisehms